#### CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-SSC-PDD) Version 03 - in effect as of: 22 December 2006

#### CONTENTS

- A. General description of the small scale <u>project activity</u>
- B. Application of a <u>baseline and monitoring methodology</u>
- C. Duration of the project activity / crediting period
- D. Environmental impacts
- E. <u>Stakeholders'</u> comments

#### Annexes

- Annex 1: Contact information on participants in the proposed small scale project activity
- Annex 2: Information regarding public funding
- Annex 3: Baseline information
- Annex 4: Monitoring Information

## Revision history of this document

| Version<br>Number | Date                | Description and reason of revision                                                                                                                                                                                                                                                                                                                                          |
|-------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01                | 21 January 2003     | Initial adoption                                                                                                                                                                                                                                                                                                                                                            |
| 02                | 8 July 2005         | <ul> <li>The Board agreed to revise the CDM SSC PDD to reflect guidance and clarifications provided by the Board since version 01 of this document.</li> <li>As a consequence, the guidelines for completing CDM SSC PDD have been revised accordingly to version 2. The latest version can be found at <hr/><hr/>http://cdm.unfccc.int/Reference/Documents&gt;.</li> </ul> |
| 03                | 22 December<br>2006 | • The Board agreed to revise the CDM project design document for small-scale activities (CDM-SSC-PDD), taking into account CDM-PDD and CDM-NM.                                                                                                                                                                                                                              |

#### SECTION A. General description of small-scale project activity

#### A.1 Title of the small-scale project activity:

Kuzkaya Weir and HEPP - Turkey

Version number of document: 01; Date: 16/04/2012 Version number of document: 02; Date: 25/01/2013

#### A.2. Description of the small-scale project activity:

Kuzkaya Weir and HEPP project will be developed by Murat Kaan Elektrik Üretim A.Ş (Murat Kaan Electricity Production INC.) at Kastamonu Province, Araç District, at the Blacksea Region. Within the scope of the project, there will be two weirs linked to two power houses by independent transmission channels. Kuzkaya 1 Weir will take its water flow from Araç Creek and Kuzkaya 1 power house with an installed capacity 3.59 MWe will discharge the water to Karadere Creek. Kuzkaya 2 Weir will be established at the downstream of Kuzkaya 1 power house. Kuzkaya 2 Weir will take its water flow from Karadere Creek and discharge the flow to Araç Creek from the Kuzkaya 2 Power House with an installed capacity 2.928 MWe.<sup>1</sup> Total installed capacity of the proposed project is 6.518 MWe.

The annual electricity generations are 11.07 GWh and 8.82 GWh for Kuzkaya 1 HEPP and Kuzkaya 2 HEPP respectively. The total electricity generation of the project activity is expected as 19.899 GWh.<sup>2</sup>

Based on annual total electricity generation amount, the project activity will result in a  $CO_{2-eq}$  reduction of 10,957 tons annually due to use of renewable resources. The commissioning date is expected on May 2015. The Murat Kaan Elektrik Üretim A.Ş was expected to be financially feasible by means of issuing obtained VERs by project activity.

| TASK NAME                                               | DATES      |
|---------------------------------------------------------|------------|
| Prior Consideration of VER-Board Decision               | 31/03/2008 |
| Feasibility Study Report submission                     | June 2010  |
| Contract with EN-ÇEV (the Consultant of Carbon Credits) | July 2010  |
| EIA Report Approval                                     | 25/03/2011 |
| Licensing by EMRA                                       | 12/05/2011 |
| Turbine Contract – investment decision date             | 25/08/2011 |
| Expected Construction Starting Date                     | 01/05/2013 |
| Commissioning Date                                      | 01/05/2015 |

#### Table 1: Milestones of the Project

Seeking power sources which has minimum adverse effect to environment and with the maximum generation capacity, especially by using renewable sources is crucial in the 21<sup>th</sup> century. Hydroelectric enterprises that are developed and operated in a manner that is

<sup>&</sup>lt;sup>1</sup> Kuzkaya Weir and HEPP, Feasibility Study Report, page 1-4 and EIA, page 2

<sup>&</sup>lt;sup>2</sup> Kuzkaya Weir and HEPP, Feasibility Study Report, page 1-4 and EIA, page 2

economically viable, environmentally sensible and socially responsible represent the best concept of sustainable development. The renewable energy projects represent a clear contribution to the sustainable development since they substitute the consumption of fossil fuels by using the abundant natural resources of the region in an environmentally friendly way.

As a matter of fact, these types of sustainable projects represent a strategic importance in the developing countries result in generating jobs, reducing resource (petroleum, coal and natural gas) imports, and it's well known that they can contribute to bring the welfare associated with the energy services to the remotes and poorest rural communities.<sup>3</sup> Sustainability considered in three headings as follows:

#### Socio-Economic Sustainability

- This kind of projects will increase local employment of skilled labour for the installation, operation and maintenance of equipment. The project promotes the sustainable economic development which complies with Long-Term Development Strategy of Turkey.<sup>4</sup>
- Improvement of vital conditions of the population, and poverty reduction by increasing the employment is achieved in between project continuation.
- This kind of projects increase the stability of Turkey's electricity generating capacity and installed capacity while substantially reducing the import rate of fossil fuel which is used in coal fired electricity generation.
- By means of using hydroelectric technology, Turkey will reduce its dependency on a dirty and non-renewable commodity such as diesel, coal and natural gas.

#### **Environmental Sustainability**

• Hydropower is a clean energy source that is emissions free, and there are no GHG emissions that are directly related to the use of hydropower for electricity production. Furthermore, most small scale hydro power projects do not require a large impoundment of water, which is a key reason why such projects are often referred to as environmentally-friendly, or "green power."<sup>5</sup> Hydroelectricity having zero emission of GHG, compared with power plants driven by gas, coal or oil, can help retard global warming. Although only 33% of the available hydroelectric potential has been developed, today hydroelectricity prevents the emission of GHG corresponding to the burning of 4.4 million barrels of petroleum per day worldwide.<sup>6</sup>

#### **Technological Sustainability**

- By the way of producing electricity and transferring to the national grid, the capacity of generating electricity capacity of Turkey is increased.
- This energy self-sufficiency will introduce a low carbon technology and reduce GHG produced by fossil fuels.
- Technology and know-how transfer are in progress during project installation and operation

The "Tool for the demonstration and assessment of additionality, version 06.0.0" EB 65 is assessed within the PDD to demonstrate the additionality of the proposed project.

<sup>&</sup>lt;sup>3</sup> Retrieved from http://www.sica.int/busqueda/Noticias.aspx?IDItem=55899&IDCat=3&IdEnt=117&Idm=2&IdmStyle=2

<sup>&</sup>lt;sup>4</sup> T.R Prime Ministry State Planning Organization, 2001, www.dpt.gpv.tr

<sup>&</sup>lt;sup>5</sup> Hydromax Energy Limited, http://www.hydromaxenergy.com/Green+Power/Green+Power.htm

<sup>&</sup>lt;sup>6</sup> Retrieved from http://ga.water.usgs.gov/edu/hydroadvantages.html , December, 2010

#### A.3. Project participants:

| Name of Party involved (*)<br>((host) indicates a host party) | Private and/or public entity(ies)<br>project participants (*)<br>(as applicable) | Kindly indicate if the Party involved<br>wishes to be considered as project<br>participant (Yes/No) |
|---------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Turkey                                                        | Murat Kaan Elektrik Üretim A.Ş.                                                  | No                                                                                                  |
| ( host country)                                               | ( private company)                                                               | INO                                                                                                 |

Murat Kaan Elektrik Üretim A.Ş. is the owner of the generation license for the project activity and therefore, legal owner of the project activity.

Full contact information for the project participants is provided in Annex 1.

EN-ÇEV Ltd. Şti. is the carbon consultant of the project activity.

Turkey, the host country, passed legislation in Parliament on February 5th 2009 to ratify the Kyoto Protocol - Turkey does not yet have a quantitative emission reduction limit and it is likely that it will not until post 2012 and therefore continues to be eligible for voluntary emission reduction projects in the interim period.

#### A.4. Technical description of the <u>small-scale project activity</u>:

#### A.4.1. Location of the <u>small-scale project activity</u>:

A.4.1.1. <u>Host Party</u>(ies):

Turkey

| A.4.1.2. | <b>Region/State/Province etc.:</b> |  |
|----------|------------------------------------|--|
|          |                                    |  |

Black Sea Region/ Province of Kastamonu / Araç District

The location of Kastamonu Province on Turkey map and the project site are given below as Figure 1.





Figure 1: Identification of the Project area on Turkey map

Project is located in the province of Kastamonu, Araç District.

# A.4.1.4. Details of physical location, including information allowing the unique identification of this <u>small-scale project activity</u>:

Project area lies between 41° 13' 40"- 41° 14' 40" North latitudes and 33° 01' 50"- 33° 07' 30" east longitudes. The closest settlement areas are tabulated below by the distance with respect to the structure within the scope of the proposed project.

| The structure within the scope<br>of the project | Neighbouring site  | Distance<br>(m) | Neighbouring site<br>direction wrt the<br>structure |
|--------------------------------------------------|--------------------|-----------------|-----------------------------------------------------|
| Kurlana Wair 1                                   | Samatlar Village   | 1500            | East                                                |
| Kuzkaya weir-i                                   | A settlement       | 250             | South east                                          |
| Kuzhovo Doworkovoo 1                             | Saltuklu Village   | 1300            | North                                               |
| Kuzkaya Powemouse-1                              | A settlement       | 250             | South east                                          |
| Kughaya Wair 2                                   | Saltuklu Village   | 1500            | North east                                          |
| Kuzkaya wen-2                                    | Nearest settlement | 1000            | North east                                          |
| Kurtova Dowathouse 2                             | Kayaboğazı Village | 250             | North                                               |
| Kuzkaya Powernouse-2                             | Nearest settlement | 100             | North                                               |

Table 2: The closest settlement and villages to the proposed project units

Source: Kuzkaya Weir and HEPP, EIA, page 13, 14

The transmission channel of Kuzkaya 1 HEPP is in the borders of Samatlar, Aşağıçobanözü ve Saltuklu Villages of Araç District.

The transmission channel of Kuzkaya 2 HEPP is in the borders of Kayabaşı, Kayaboğazı, Oycalı and Saltuklu Villages of Araç District.

| Kuzkaya 1              |             | Geographic - Decimal<br>Degree |            | Kuzkaya 2           |             | Geographic - Decimal<br>Degree |            |
|------------------------|-------------|--------------------------------|------------|---------------------|-------------|--------------------------------|------------|
| Unit                   | Point<br>No | Latitude                       | Longitude  | Unit                | Point<br>No | Latitude                       | Longitude  |
| Weir                   | 1           | 41.2309967                     | 33.1186217 | Weir                | 1           | 41.2434666                     | 33.0612026 |
| Sedimentation<br>basin | 1           | 41.2318858                     | 33.1202626 | Sedimentation basin | 1           | 41.2448518                     | 33.0620458 |
|                        | 1           | 41.2420370                     | 33.0720213 |                     | 1           | 41.2338019                     | 33.0345031 |
| Transmission           | 3           | 41.2400828                     | 33.0791517 | Transmission        | 3           | 41.2382711                     | 33.0367937 |
| channel                | 5           | 41.2357978                     | 33.0864851 | channel             | 5           | 41.2405899                     | 33.0476980 |
|                        | 7           | 41.2339264                     | 33.1090920 |                     | 7           | 41.2425181                     | 33.0544380 |
| Head pond              | 1           | 41.2433139                     | 33.0707709 | Head pond           | 1           | 41.2335534                     | 33.0339948 |
| Donato als             | 1           | 41.2428888                     | 33.0688099 | Donatool            | 1           | 41.2336309                     | 33.0343262 |
| Penstock               | 2           | 41.2428211                     | 33.0710371 | Penstock            | 2           | 41.2334560                     | 33.0345034 |
| Power house            | 1           | 41.2434585                     | 33.0659969 | Power house         | 1           | 41.2333040                     | 33.0342075 |

#### Table 3: Coordinates of the Project Units

Source: Kuzkaya Weir and HEPP, EIA Report, Cover page



**Figure 2: General Layout of the Project Units** *Source: Kuzkaya Weir and HEPP, EIA Report, page 24* 

# A.4.2. Type and category(ies) and technology/measure of the <u>small-scale</u> <u>project</u> <u>activity</u>:

According to the latest Gold Standard VER Manual for Project Developers 15, the Project falls into the type A.1. - Renewable Energy. According to Appendix B of the UNFCC's published "Simplified Modalities and Procedures for Small-Scale Clean Development Mechanism Project Activities", category of this project activity is AMS-I.D: Grid Connected Renewable Electricity Generation.

The hydroelectric technology of proposed project uses the natural flow of water from a river to produce electricity. It has no associated large dam or reservoir. The proposed project was designed as; a portion of the river's flow is diverted to a powerhouse before the water is returned to its natural watercourse. The water reaches the powerhouse through a tunnel or penstock, which drops from the intake. Once the water reaches the powerhouse, it is at a very high pressure and is directed into a turbine before it is fed back into the river. The power generated is connected to a local power grid through a high voltage transmission line. The environmental footprint of HEPPs without dams is typically considered lower-impact when compared to large scale hydroelectric facilities that have large water storage dams. There is no alteration of downstream flows, since all diverted water is returned to the stream after the powerhouse. Further, with no large dam to alter the river's flow, the design attempts to mitigate the environmental concerns traditionally associated with commercial dam-based hydroelectric projects.

The only purpose of the proposed project is to produce energy. The generated electricity will be connected to national interconnected system for public welfare.

The units of the project activity are: Kuzkaya 1 weir, water intake structure, scouring sluice, fish passage, sedimentation basin, trapezoidal transmission channel, head pond, penstock, Kuzkaya 1 power house and tail water channel and Kuzkaya 2 Weir, water intake structure, scouring sluice, fish passage, sedimentation basin, trapezoidal transmission channel, head pond, penstock, Kuzkaya 2 power house and tail water channel.<sup>7</sup>

Within the project activity, the water taken by virtue of Kuzkaya Weirs (water intake structure) will be conveyed to the head pond through the transmission channel to avoid flow fluctuations and then conveyed to the power house by means of the penstock. The turbines convert the potential energy of water to mechanical energy. Then, the turbines turn up the generator and the generator produce electrical energy by converting the mechanical energy to electrical energy; the water passed from the turbines in the Kuzkaya 1 power houses will be released back to Karadere Creek without any alteration to its quality and quantity. The water passed from the turbines in the Kuzkaya 2 power house will be released back to Araç Creek without any alteration to its quality and quantity.

#### **Technical Details of Units**

 Table 4: The units of the Kuzkaya 1 HEPP and Kuzkaya 2 HEPP and their characteristics

|--|

<sup>&</sup>lt;sup>7</sup> Kuzkaya Weir and HEPP, EIA Report, section V.2.1

|                          | average flow coming to weir: 6.96 m <sup>3</sup> /s                                           |
|--------------------------|-----------------------------------------------------------------------------------------------|
|                          | <ul> <li>radial gate structure with 9 gates (h:3.1 m, w:5.5 m)</li> </ul>                     |
|                          | • crest length : 59.9 m                                                                       |
|                          | <ul> <li>thalweg elevation: 497 m</li> </ul>                                                  |
|                          | • average water elevation: 499 m                                                              |
| Weir                     | maximum water elevation: 500.45 m                                                             |
|                          | crest elevation: 501 m                                                                        |
|                          | • fish passage on the boundary wall at the left side of the creek                             |
|                          | • the gate which is near the intake structure will be used as                                 |
|                          | scouring sluice                                                                               |
|                          | <ul> <li>basin elevation: 496.6 m</li> </ul>                                                  |
|                          | • width: 13.1 m                                                                               |
| Water intake structure   | length: 10.75 m                                                                               |
|                          | intake transition structure length: 10 m                                                      |
|                          | • width: 13 m                                                                                 |
|                          | length: 50 m                                                                                  |
|                          | • water depth: 3-3.5 m                                                                        |
| Sedimentation basin      | <ul> <li>slope of basin: 0.01</li> </ul>                                                      |
|                          | <ul> <li>basin elevation: 496-495.5 m</li> </ul>                                              |
|                          | <ul> <li>exit transition structure length: 11.5 m</li> </ul>                                  |
|                          | <ul> <li>right side of Creek</li> </ul>                                                       |
|                          | <ul> <li>slope: 0.0003</li> </ul>                                                             |
| Turnenissian shared      | <ul> <li>width of basin: 3.65 m</li> </ul>                                                    |
| (transmission channel    | water depth : 1.94 m                                                                          |
| (trapezoidai channel)    | <ul> <li>channel length: 5970 m</li> </ul>                                                    |
|                          | project flow: 15.5 m <sup>3</sup> /s                                                          |
|                          | project velocity: 1.22 m/s                                                                    |
|                          | • ave. / min. / maxi. water elevation: 497.06 / 495.85 / 497.39 m                             |
|                          | • width: 10 m                                                                                 |
| Head pond                | <ul> <li>length: 49 m</li> </ul>                                                              |
|                          | • water depth: 1.94-9.81 m                                                                    |
|                          | • volume: 594 m <sup>3</sup>                                                                  |
|                          | • diameter: 2 m                                                                               |
| Penstock                 | length: 60 m                                                                                  |
|                          | • pipe wall thickness: 9 mm                                                                   |
|                          | • max velocity: 5 m/s                                                                         |
|                          | <ul> <li>left side of Karadere Creek, 470 m elevation</li> </ul>                              |
|                          | <ul> <li>Installed capacity: 3.590 MWe</li> </ul>                                             |
|                          | • tail water elevation: 4/0 m                                                                 |
|                          | gross head: 29 m                                                                              |
| D                        | max net head: 2/.01 m                                                                         |
| Power nouse              | • average net nead: 26.88 m                                                                   |
|                          | <ul> <li>minimum net nead. 20.40 m</li> <li>2 y horizontal avag Eranaia turbinas</li> </ul>   |
|                          | • 5 x horizontal axes Francis turbines                                                        |
|                          | <ul> <li>Infinite energy: 0 G will/year</li> <li>accordery: anorgy: 11.07 CWk/year</li> </ul> |
|                          | total energy: 11.07 GWh/year                                                                  |
|                          | $= \frac{1}{10000000000000000000000000000000000$                                              |
| Fnergy Transmission Lina | = 345  kV                                                                                     |
| Energy Transmission Line | <ul> <li>Jt.J K V</li> <li>length: 5.5 km to transformer station of another UEDD</li> </ul>   |
|                          | - length. 5.5 km to transformer station of another fills f                                    |

Source: Kuzkaya Weir and HEPP, EIA Report, page 4, 5

| KUZKAYA 2 Units           | Characteristics                                                                            |
|---------------------------|--------------------------------------------------------------------------------------------|
|                           | <ul> <li>average flow coming to weir: 1.77 m<sup>3</sup>/s</li> </ul>                      |
|                           | <ul> <li>radial gate structure with 4 gates (h:3.1 m, w:5.5 m)</li> </ul>                  |
|                           | <ul> <li>crest length : 25.9 m</li> </ul>                                                  |
|                           | <ul> <li>thalweg elevation: 467 m</li> </ul>                                               |
| Weir                      | • average water elevation: 470 m                                                           |
|                           | <ul> <li>maximum water elevation: 470.55 m</li> </ul>                                      |
|                           | • crest elevation: 401.45 m                                                                |
|                           | fish passage on the boundary wall at the left side of the creek                            |
|                           | • the gate which is near the intake structure will be used as                              |
|                           | scouring stuice                                                                            |
|                           | basin elevation: 46/.6 m                                                                   |
| Water intake structure    | • Width: 1/.9 m                                                                            |
|                           | <ul> <li>Iteliguit. 10.75 III</li> <li>intoke transition structure length: 10 m</li> </ul> |
|                           | • make transition structure length. To m                                                   |
|                           | • Widdii. 10 III<br>• Jongth: 50 m                                                         |
|                           | <ul> <li>verter denth: 2.3.5 m</li> </ul>                                                  |
| Sedimentation basin       | slope of basin: 0.01                                                                       |
|                           | <ul> <li>hasin elevation: 467-466 5 m</li> </ul>                                           |
|                           | <ul> <li>exit transition structure length: 12 25 m</li> </ul>                              |
|                           | <ul> <li>right side of Creek</li> </ul>                                                    |
|                           | slope: 0.00025                                                                             |
|                           | <ul> <li>width of basin: 4.4 m</li> </ul>                                                  |
| Transmission channel      | <ul> <li>water depth : 2.16 m</li> </ul>                                                   |
| (trapezoidal channel)     | <ul> <li>channel length: 3460 m</li> </ul>                                                 |
|                           | • project flow: $20 \text{ m}^3/\text{s}$                                                  |
|                           | project velocity: 1.21 m/s                                                                 |
|                           | • ave. / min. / maxi. water elevation: 468.99 / 467.57 / 469.62 m                          |
|                           | • width: 20 m                                                                              |
| Head pond                 | <ul> <li>length: 30 m</li> </ul>                                                           |
|                           | water depth: 2.16-10.52 m                                                                  |
|                           | • volume: 850 m <sup>3</sup>                                                               |
|                           | <ul> <li>diameter: 2.25 m</li> </ul>                                                       |
| Penstock                  | <ul> <li>length: 27 m</li> </ul>                                                           |
| I CHSLOCK                 | pipe wall thickness: 10 mm                                                                 |
|                           | max velocity: 5 m/s                                                                        |
|                           | <ul> <li>right side of Araç Creek</li> </ul>                                               |
|                           | <ul> <li>installed capacity: 2.928 MWe</li> </ul>                                          |
|                           | • tail water elevation: 452 m                                                              |
|                           | • gross head: 18 m                                                                         |
|                           | max net head: 16.935 m                                                                     |
| Power house               | average net head: 16.888 m                                                                 |
|                           | <ul> <li>minimum net nead: 16./26 m</li> <li>2 x S type Kaplen typings</li> </ul>          |
|                           | firm energy : 0 GWb/year                                                                   |
|                           | secondary energy: 8 820 GWh/year                                                           |
|                           | <ul> <li>total energy: 8.829 GWh/year</li> </ul>                                           |
|                           | 3/0 nigeon                                                                                 |
| Energy Transmission I inc | $\mathbf{345 kV}$                                                                          |
| Energy Transmission Entre | <ul> <li>length: 3.5 km to Kuzkaya 1 power house</li> </ul>                                |

Source: Kuzkaya Weir and HEPP, EIA Report, page 5, 6

#### Mitigation of Noise Pollution:

For construction phase; an assessment was conducted within the scope of EIA<sup>8</sup> to identify the impact of noise observed from the construction activities as per "The Regulation on The Assessment and Management of Ambient Noise", published on the official gazette date: 07/03/2008 and no: 26809. The regulation emphasizes the limit value for construction activity as 70 dBA<sup>9</sup>. The noise pressure levels of selected construction areas (ie: areas of Kuzkaya 1 and 2 weirs, areas of transmission channels, areas of Kuzkaya 1 and 2 power houses) were calculated by using the noise levels of to be used heavy vehicles<sup>10</sup> during construction. Then, the impact of noise level of the area to the closest settlement was assessed. The result of the assessment was tabulated as;

| <b>Construction Area</b> | <b>Closest Settlement</b> | Noise Level Calculated | Result                |
|--------------------------|---------------------------|------------------------|-----------------------|
| Kuzkaya 1Weir            | 250 m                     | 58.65 dBA              | Below the limit value |
| Kuzkaya 2Weir            | 1000 m                    | 46.61 dBA              | Below the limit value |
| Kuzkaya 1Transmission    | 100 m                     | 68.01 dBA              | Below the limit value |
| Kuzkaya 2Transmission    | 700 m                     | 51.11 dBA              | Below the limit value |
| Kuzkaya 1Power House     | 250 m                     | 60.55 dBA              | Below the limit value |
| Kuzkaya Power House      | 100 m                     | 68.51 dBA              | Below the limit value |

 Table 5: The Impact of Noise Levels of Construction Areas to Closest Settlements<sup>11</sup>

Hence, the noise levels of specific construction areas were detected lower than the limit value with respect to the distance in between.

For operation phase; no heavy vehicles which can result in noise pollution will be operated. Only source of noise can be electromechanical equipment in the power houses. In order to mitigate the noise level of equipment, closed type power houses will be constructed.

#### Mitigation of PM, Dust and Emission Pollution:

For construction phase; an assessment was conducted within the scope of  $\text{EIA}^{12}$  to identify the amount of to be formed PM and dust. The limit values of PM and dust were specified with respect to the "Regulation on the Control of Industrial Air Pollution" and "Regulation on the Assessment and Management of Air Quality" as for short term: 140 µg/m<sup>3</sup> and 390 mg/m<sup>2</sup>/day and for long term: 78 µg/m<sup>3</sup> and 210 mg/m<sup>2</sup>/day respectively for the year 2013.<sup>13</sup>

The calculations for the amount of PM and dust formation were performed by MATCAD and enclosed to Annex 15 of EIA Report. The results are as follows;

#### Table 6: The PM and Dust Amount to be Formed during Construction Phase<sup>14</sup>

Area

<sup>11</sup>Kuzkaya Weir and HEPP, EIA Report, page 145

Short Term (24 hrs.) Long Term (Annual)

<sup>&</sup>lt;sup>8</sup> Kuzkaya Weir and HEPP, EIA Report, Section V.1.20 and Annex 16

<sup>&</sup>lt;sup>9</sup> decibel A-weighting, an environmental noise measurement

<sup>&</sup>lt;sup>10</sup> Due to the nature of the assessment, it was be assumed that, all heavy vehicles will be used at the same time. However, it is not possible in reality. Hence, the real noise level will be lower than the calculated ones.

<sup>&</sup>lt;sup>12</sup> Kuzkaya Weir and HEPP, EIA Report, page 118-120 and Annex 15

<sup>&</sup>lt;sup>13</sup> The specified limit values in the regulation have a descending order for the subsequent years: 2008-2014 as transition period.

<sup>&</sup>lt;sup>14</sup> Kuzkaya Weir and HEPP, EIA Report, page 119

|      | Kuzkaya 1Weir Area Uncontrolled Situation                                                                                                                                                                        | 74.54 μg/m3                                                                                                                      | 14.43 μg/m3                                                                                    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|      | Kuzkaya 1Transmission Channel Area Uncontrolled Situation                                                                                                                                                        | 26.6 μg/m3                                                                                                                       | 5.12 μg/m3                                                                                     |
| РМ   | Kuzkaya 1 Power House Area Uncontrolled Situation                                                                                                                                                                | 47.09 μg/m3                                                                                                                      | 9.1 μg/m3                                                                                      |
|      | Kuzkaya 2Transmission Channel Area Uncontrolled Situation                                                                                                                                                        | 13.21 μg/m3                                                                                                                      | 2.5 μg/m3                                                                                      |
|      | Kuzkaya 2 Power House Area Uncontrolled Situation                                                                                                                                                                | 16.26 μg/m3                                                                                                                      | 3.13 µg/m3                                                                                     |
|      |                                                                                                                                                                                                                  |                                                                                                                                  |                                                                                                |
|      | Area                                                                                                                                                                                                             | Short Term (24 hrs.)                                                                                                             | Long Term (Annual)                                                                             |
|      | Area<br>Kuzkaya 1Weir Area Uncontrolled Situation                                                                                                                                                                | Short Term (24 hrs.)           367.34 mg /m2-gün                                                                                 | Long Term (Annual)<br>70.83 mg/m2-gün                                                          |
|      | Area         Kuzkaya 1Weir Area Uncontrolled Situation         Kuzkaya 1Transmission Channel Area Uncontrolled Situation                                                                                         | Short Term (24 hrs.)           367.34 mg /m2-gün           133.0 mg /m2-gün                                                      | Long Term (Annual)<br>70.83 mg/m2-gün<br>25.64 mg/m2-gün                                       |
| Dust | AreaKuzkaya 1Weir Area Uncontrolled SituationKuzkaya 1Transmission Channel Area Uncontrolled SituationKuzkaya 1 Power House Area Uncontrolled Situation                                                          | Short Term (24 hrs.)           367.34 mg /m2-gün           133.0 mg /m2-gün           234.76 mg /m2-gün                          | Long Term (Annual)<br>70.83 mg/m2-gün<br>25.64 mg/m2-gün<br>45.26 mg/m2-gün                    |
| Dust | AreaKuzkaya 1Weir Area Uncontrolled SituationKuzkaya 1Transmission Channel Area Uncontrolled SituationKuzkaya 1 Power House Area Uncontrolled SituationKuzkaya 2Transmission Channel Area Uncontrolled Situation | Short Term (24 hrs.)           367.34 mg /m2-gün           133.0 mg /m2-gün           234.76 mg /m2-gün           66.8 mg/m2-gün | Long Term (Annual)<br>70.83 mg/m2-gün<br>25.64 mg/m2-gün<br>45.26 mg/m2-gün<br>12.74 mg/m2-gün |

It is concluded that, the expected and calculated PM and dust formation will not exceed the regulated limit values.

In addition to that for mitigate the formation of dust and PM<sup>15</sup>;

- Care to empting/fulfilling of trucks without blowing about,
- Speed restrictions to heavy vehicles,
- Spraying activities of roads during construction.

For operation phase; no emission pollution will be observed since the project activity is a HEPP and it is not an emission source by its nature.

#### Mitigation of Impact of Explosions:

No explosive material will be used up during construction or operation phases of project activity.<sup>16</sup>

#### **Excavated Material and Its Temporal Storage:**

Another assessment regarding amount of excavated soil was conducted in the EIA<sup>17</sup>. The excavation will be stored temporarily at the formerly specified and permitted storage area. There were specified three temporary storage areas. The excavation and top soil will be stored separately at those areas. Then, the excavation will be reused for landfilling, backfilling, road repair and service road building purposes.

It was indicated that, the 20% of the excavated material will be topsoil (vegetable soil) and stored topsoil will be reused for landscaping and reclamation purposes. The residual excavation (if any) will be reused at the repair of village roads upon the request of Kastamonu Provincial Directorate or disposed to solid waste disposal site by the permission of Araç Municipality.<sup>18</sup>

<sup>&</sup>lt;sup>15</sup> Kuzkaya Weir and HEPP, EIA Report, page 119,120

<sup>&</sup>lt;sup>16</sup> Kuzkaya Weir and HEPP, EIA Report, page 131

<sup>&</sup>lt;sup>17</sup> Kuzkaya Weir and HEPP, EIA Report, section V.1.17 and page 141

<sup>&</sup>lt;sup>18</sup> Kuzkaya Weir and HEPP, EIA Report, page 141

The excavation shall not be poured to river bed, which is strictly forbidden by laws. The project activity will be complied with the "Regulation on the Control of Excavation, Construction and Ruins Waste".

The completion time of the project -total construction time- will be nearly 2 years<sup>19</sup>. The expected operational lifetime of the project is estimated at about 45 years 11 days.<sup>20</sup>

Small HEPP projects are among the projects with minimal impact on environment and local people. No environmentally harmful emission is anticipated. All regulations regarding the protection of air quality will be followed during the construction. Any solid and liquid wastes formed during the construction and operation of the plant will be collected and discharged in accordance with the "Regulations on the Control of Solid Wastes" and "Regulation on the Control of Water Pollution".<sup>21</sup>

Furthermore, along the transmission channel, some bridges will be constructed to maintain the access of local people and other ecosystem components. All precautions will be provided for protection. During the construction, the transportation shall not be disrupted. In case of any damage to the existing roads or infrastructure despite of the precautions and mitigation measures, the damaged roads will be repaired and damage to infrastructure will be covered by the project owner.

The generated electricity will be connected to national interconnected system by Araç Transformer Station.<sup>22</sup>

#### Minimum Flow;

The project designed as a hydroelectric power plant which does not consume water while operating. Water that will be diverted to the transmission channels will be released back to the creek to Creek without any pollution or chemical/physical/quantitative alteration. In this respect, no water will be consumed.

The specified amount of flow shall and will be released for sustainability. The ecological flow amount and water rights of downstream users are the key concerns, releasing of those after weir structure preserve the ecological life/habitat and provide concord with downstream users and stakeholders respectively. The released water to creek will be continuously measured by an online flow meter at where it is positioned by the 23<sup>rd</sup> Regional Directorate of DSI<sup>23</sup> and in conjunction with online system of the DSI.<sup>24</sup>

The minimum flow is the ecological water demand of water source of the project. Some amount of water shall be released to creek after weir structure to stimulate the natural flow regime and sustain the ecology in the river basin. With respect to the regulation on "Procedures and Principles on signing Water Right Agreement to engage in the Electricity Production Market" published in the official gazette no: 25150 date: 26/6/2003; amendment official gazette no:

<sup>&</sup>lt;sup>19</sup> Kuzkaya Weir and HEPP, EIA Report, page 6

<sup>&</sup>lt;sup>20</sup> See Section C.1.2 for detailed information

<sup>&</sup>lt;sup>21</sup> Kuzkaya Weir and HEPP, page 197

<sup>&</sup>lt;sup>22</sup> Kuzkaya Weir and HEPP, EIA Report, page 3

<sup>&</sup>lt;sup>23</sup> The State Hydraulic Works

<sup>&</sup>lt;sup>24</sup> Kuzkaya Weir and HEPP, EIA Report, page 165

27323, date: 18/08/2009, the minimum flow (ecological flow) should be released to creek to sustain ecosystem components.

For the project activity, in order to sustain the ecosystem hydrological regime during the months; July and August having the lowest flow in the year, the water flow is not going to be diverted to transmission channels for both Kuzkaya 1 and 2. The water intake structures are going to be closed and all coming water flow to weirs is going to be released to water bed. In this regard, the Kuzkaya 1 HEPP and Kuzkaya 2 HEPP will not generate electricity in July and August.<sup>25</sup>

|           | Minimum (eco    | ological) flow  |
|-----------|-----------------|-----------------|
| Months    | Kuzkaya 1 Weir  | Kuzkaya 2 Weir  |
| January   | 450 l/sec       | 260 l/sec       |
| February  | 1250 l/sec      | 260 l/sec       |
| March     | 1250 l/sec      | 260 l/sec       |
| April     | 1250 l/sec      | 260 l/sec       |
| May       | 1250 l/sec      | 260 l/sec       |
| June      | 1250 l/sec      | 260 l/sec       |
| July      | All coming flow | All coming flow |
| August    | All coming flow | All coming flow |
| September | 450 l/sec       | 260 l/sec       |
| October   | 450 l/sec       | 260 l/sec       |
| November  | 450 l/sec       | 260 l/sec       |
| December  | 450 l/sec       | 260 l/sec       |

Table 7: The Amount of Minimum (Ecological) Flow Released from Kuzkaya 1 and 2 Weirs in a year<sup>26</sup>

#### Downstream Users' Water Rights;

The quantity of downstream users' water rights was determined within the scope of EIA. The Downstream Users' Water Rights Report<sup>27</sup> was conducted and specified the water amount that have been using for irrigational purposes, for wells, watermills, or for drinking purposes between the weir and the power house. As per the report, the irrigation area for agriculture between Kuzkaya 1 weir and power house is 210 ha and between Kuzkaya 2 Weir and power house is 22 ha. The length of the river bed between Kuzkaya 1 weir and powerhouse is  $6,500 \text{ m}^{28}$ and the length between Kuzkaya 2 Weir and power house is estimated roughly 2,000 m. The required amount of irrigation water has to be released from weir and the amount during the months of irrigation.<sup>29</sup>

Table 8: The Water Released for Irrigational Purposes (l/sec) from Kuzkaya 1and 2 Weirs by Irrigation Months <sup>30</sup>

|        | Q released f   | or irrigation  |
|--------|----------------|----------------|
| Months | Kuzkaya 1 Weir | Kuzkaya 2 Weir |

 <sup>&</sup>lt;sup>25</sup> Kuzkaya Weir and HEPP, EIA Report, page 162,163
 <sup>26</sup> Kuzkaya Weir and HEPP, EIA Report, page 162,163

<sup>&</sup>lt;sup>27</sup> Kuzkaya Weir HEPP, EIA Report, Annex 21

<sup>&</sup>lt;sup>28</sup> Kuzkaya Weir and HEPP, EIA Report, page 161

<sup>&</sup>lt;sup>29</sup> Kuzkaya Weir and HEPP, EIA Report, page 163

<sup>&</sup>lt;sup>30</sup> Kuzkaya Weir and HEPP, EIA Report, page 162-164 and Annex 21

| May       | 16.88 l/sec     | 5.72 l/sec      |  |
|-----------|-----------------|-----------------|--|
| June      | 33.76 l/sec     | 7.7 l/sec       |  |
| July      | All coming flow | All coming flow |  |
| August    | All coming flow | All coming flow |  |
| September | 23.21 l/sec     | 1.76 l/sec      |  |

An assessment<sup>31</sup> was conducted by Black Sea Technical University in order to specify the impact of proposed project to off-legal wells which mean that they were not opened by DSI or any authority. Therefore, the reliable and safe drawing amounts are not known. The University assessed the site, topographic, water level and etc. to investigate in what degree the project activity will affect the water wells. The assessment concludes that the underground water level increases from the water level of river towards the slopes and the lowest underground level is detected at the connection points of river and underground water level and finally in all cases the underground water feds the Araç Creek. Therefore, any problem on the decrease of water level of wells is not foreseen directly. In this respect, any amount of flow for well will not left from weir structure to creek.

The project owner committed to take all precautions against the problems by reason of the decrease of water level in wells.

The flow released after weir structure which composes of minimum (ecological) flow and water utilization right shall always be measured by a flow meter to monitor the amount. The establishment of flow meter is obligatory and under responsibility of the project owner. The flow meter is linked to the State Hydraulic Works with an online system and measured continuously.<sup>32</sup>

| Months    | Released from<br>Kuzkaya 1 weir     | Released from<br>Kuzkaya 2 weir  |
|-----------|-------------------------------------|----------------------------------|
| January   | 450 l/sec                           | 260 l/sec                        |
| February  | 1250 l/sec                          | 260 l/sec                        |
| March     | 1250 l/sec                          | 260 l/sec                        |
| April     | 1250 l/sec                          | 260 l/sec                        |
| May       | 1250 + 16.88 = <b>1266.88 l/sec</b> | 260 + 5.72 = <b>265.72 l/sec</b> |
| June      | 1250 + 33.76 = <b>1283.76 l/sec</b> | 260 + 7.7 = <b>267.7 l/sec</b>   |
| July      | All coming flow                     | All coming flow                  |
| August    | All coming flow                     | All coming flow                  |
| September | 450 + 23.21 = <b>473.21 l/sec</b>   | 260 + 1.76 = <b>261.76 l/sec</b> |
| October   | 450 l/sec                           | 260 l/sec                        |
| November  | 450 l/sec                           | 260 l/sec                        |
| December  | 450 l/sec                           | 260 l/sec                        |

 Table 9: The Total Amount of Water to be released from Weir Structures (the summation of minimum flow and water flow for irrigation)

<sup>&</sup>lt;sup>31</sup> Kuzkaya Weir and HEPP, EIA Report, page 164,165 and Annex 22

<sup>&</sup>lt;sup>32</sup> Kuzkaya Weir and HEPP, EIA Report, page 165

Kuzkaya 1 and Kuzkaya 2 HEPP project were designed without reservoirs. The backwater formed by the way of weir structure is for regulation of coming flow. The area of backwater before the Kuzkava 1 Weir will be 10,000  $\text{m}^2$  and the area of backwater before the Kuzkava 2 Weir will be  $15.000 \text{ m}^{2.33}$ 

The vegetation will be disrupted because of the construction of units. The vegetation at the area is distributed broadly in Turkey. Hence, the disruption can be accepted as tolerable. The mitigation measures will be performed to provide the least disturbance to the vegetation, floral and faunal species and environment.<sup>34</sup>

An endemic species were not determined based on the on-site surveys and studies during the preparation of EIA.<sup>35</sup> The risk is neither for fauna nor for floral species. In order to stimulate the natural flow regime and sustain the fish living, fish passages under the weir structure will be constructed.<sup>36</sup> Besides, fish migration is provided by fish passage<sup>37</sup> which is designed properly to provide the transition of fishes.

A Social Impact Assessment Report<sup>38</sup> was conducted by an expert in order to identify the social impacts can be occurred based on the proposed project. The main point of this report was about the concern of local people on reduction in the water flow of Arac Creek. The importance of the water utilization rights was expressed. With respect to the report, the proposed project cause a decrease in the flow of Arac Creek and which may affect the agricultural activities. To sustain the agricultural activities and avoid considering it as a threat by local people, the specified amount of water should be released from weir structure. Moreover, as mentioned above, in July and August, the water will not transmitted to operate the power house. Therefore, the concerns of local people are taken off.

The preference of using the labour force from the vicinity may be helpful to procure acceptance of proposed project.<sup>39</sup>

The proposed project contributes to reduction of emissions owing to electricity generation activities as a small hydro project. Based on annual total electricity generation amount, 19.89 GWh, the project activity will result in a  $CO_2$ -eq reduction of 10,957 tons annually.

The scenario existing prior to the project activity is non-existence of a power plant. In this respect, there is no contribution to energy demand of Turkey since no generation of electricity occurs. Prior to project activity, the energy is provided by the power plants existing all around the host country, Turkey, also known as applicable geographical area as per methodological tool "Combined tool to identify the baseline scenario and demonstrate additionality", version 04.0.0. The baseline scenario is the same as the scenario existing prior to the project activity.

<sup>&</sup>lt;sup>33</sup> Kuzkaya Weir and HEPP, EIA Report, page 29

<sup>&</sup>lt;sup>34</sup> Kuzkaya Weir and HEPP, EIA Report, page 27 <sup>35</sup> Kuzkaya Weir and HEPP, EIA Report, section IV.2.11 <sup>35</sup> Kuzkaya Weir and HEPP, EIA Report, page 81 and 86 <sup>36</sup> Kuzkaya Weir and HEPP, EIA Report, page 103

 <sup>&</sup>lt;sup>37</sup> Kuzkaya Weir and HEPP, EIA Report, page 103 and 153
 <sup>38</sup> Kuzkaya Weir and HEPP, EIA Report, Annex 18

<sup>&</sup>lt;sup>39</sup> Kuzkaya Weir and HEPP, EIA Report, section V.3.1

#### A.4.3 Estimated amount of emission reductions over the chosen crediting period:

| Year                                                                                | Annual estimation of emission<br>reductions in tonnes of tCO2-eq |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------|
| May – December 2015 ( for 8 months)                                                 | 7,305                                                            |
| 2016                                                                                | 10,958                                                           |
| 2017                                                                                | 10,958                                                           |
| 2018                                                                                | 10,958                                                           |
| 2019                                                                                | 10,958                                                           |
| 2020                                                                                | 10,958                                                           |
| 2021                                                                                | 10,958                                                           |
| January-April 2022 ( for 4 months)                                                  | 3,653                                                            |
| Total number of crediting years                                                     | 7                                                                |
| Total emission reductions (tonnes of CO2-eq)                                        | 76,705                                                           |
| Annual average over the crediting period of estimated reductions (tonnes of CO2-eq) | 10,958                                                           |

Table 10: Estimated amount of overall emission reductions by years

#### A.4.4. Public funding of the <u>small-scale project activity</u>:

The project does not obtain public funding. (Please see Annex 2: ODA Declaration)

## A.4.5. Confirmation that the <u>small-scale project activity</u> is not a <u>debundled</u> component of a large scale project activity:

As highlighted in Appendix C of the Simplified Modalities and Procedures for Small-Scale CDM project activities, a proposed small-scale project activity shall be deemed to be a de bundled component of a large project activity if there is a registered small-scale CDM project activity or an application to register another small-scale CDM project activity:

- With the same project participants;
- In the same project category and technology/measure;
- Registered within the previous 2 years; and
- Whose project boundary is within 1 km of the project boundary of the proposed small-scale activity at the closest point.

There are two projects in the scope of subject above; the proposed project Kuzkaya Weir and HEPP and the other Samatlar HEPP project. These are individual projects since, the electricity production licences are separate and owned by different Firms. The Samatlar HEPP project has a production licence no. EÜ/3191-5/1921<sup>40</sup> and owned by "RAK A.Ş." The Kuzkaya Weir and HEPP project has a production license numbered as EÜ/3210-9/1946 and owned by "Murat Kaan Elektrik Üretim A.Ş."

<sup>&</sup>lt;sup>40</sup> Retrieved from http://www2.epdk.org.tr/lisans/elektrik/lisansdatabase/verilenuretim.asp

Based on the water basin plan, the Samatlar weir and power house will be located at the upstream of Kuzkaya 1 Weir on the Araç Creek.

The investment decisions, Feasibility Study Reports and their approvals by State Hydraulic Works and EIA Reports of the projects are independent.

Hence, the projects are not a debundled component of a large scale project activity.

Another hydropower project is planned at the upstream of Kuzkaya Weir and HEPP project which is named as Zala HEPP and has a production licence no. EÜ/2899-49/1746. The mentioned project is not a debundled component of a large scale project or any other project, on the occasion of that its the electricity production licenses, investment decisions, Feasibility Study Reports and their approvals by State Hydraulic Works and EIA Reports are all independent.

Moreover, Zala HEPP project is not in the 1km of the project boundary of the proposed project. In this respects, the proposed project, Kuzkaya Weir and HEPP project is not a bundling component of any other project.

Thereby, according to the "Guidelines on Assessment of Debundling for SSC Project Activities, version 03", the proposed project is eligible to use the simplified modalities and procedures for small-scale CDM project activities. The project activity will follow the regular CDM modalities and procedures.

#### **SECTION B. Application of a baseline and monitoring methodology**

# **B.1.** Title and reference of the approved baseline and monitoring methodology applied to the small-scale project activity:

#### Applied approved baseline and monitoring methodology:

 AMS-I.D "Approved Small Scale Methodology for Grid Connected Renewable Electricity Generation, version 17" EB 61

#### Used tools:

- "Tool for the demonstration and assessment of additionality, version 06.0.0" EB 65.
- "Tool to calculate the emission factor for an electricity system, version 02.2.1" EB 63.

#### **B.2** Justification of the choice of the project category:

Methodology AMS-I.D "Approved Small Scale Methodology for Grid Connected Renewable Electricity Generation, version 17" is applicable to the proposed project activity because it fulfils the required criteria:

- The project comprises renewable energy generation by means of hydro power.
- It is a grid-connected electricity generation project.
- The installed capacity of the proposed project activity is 6.518 MWe which is lower than 15 MW.

The project activity will not have a capacity extension at any year of the crediting period. Hence the project activity will remain under the limits of the small-scale project activity types with 6.518 MWe installed capacity.

Further, the project activity results in a small ponding area up to the weir structure to regulate the coming flow. The power density resulting by the project activity is calculated as  $260.72 \text{ W/m}^2$  under the section B.6.3 of PDD. Hence, the condition "the project activity results in a new reservoir and the power density is greater than  $4\text{W/m}^{2}$ " is satisfied to apply the methodology AMS-I.D "Approved Small Scale Methodology for Grid Connected Renewable Electricity Generation, version 17".

#### **B.3.** Description of the <u>project boundary:</u>

Regarding the "General Guidelines to SSC CDM methodologies version 17", Annex 21, EB 61; "The project boundary shall be limited to the physical project activity. Project activities that displace energy supplied by external sources shall earn certified emission reductions (CERs) for the emission reductions associated with the reduced supply of energy by those external sources."

Hence, the Project boundary is where the physical Project activity occurs.

According to the methodology AMS-I.D "Approved Small Scale Methodology for Grid Connected Renewable Electricity Generation, version 17"; the spatial extent of the project boundary includes the project power plant and all power plants connected physically to the electricity system that the CDM project power plant is connected to.

GHG gases and emission sources included in the project boundary and used in calculation of emission reduction by the project activity are given in table below:

| S                | ource                  | Gas              | Included | Justification / Explanation                        |
|------------------|------------------------|------------------|----------|----------------------------------------------------|
|                  | Electricity generation | $CO_2$           | Yes      | Main emission source                               |
| Baseline         | by power plants in     | $CH_4$           | No       | Minor emission source- excluded for simplification |
|                  | baseline               | N <sub>2</sub> O | No       | Minor emission source- excluded for simplification |
|                  | Emission from the      | $CO_2$           | No       | Minor emission source- excluded for simplification |
| Project Activity | reservoir of the       | $CH_4$           | Yes      | Main emission source                               |
|                  | proposed project       | N <sub>2</sub> O | No       | Minor emission source- excluded for simplification |

 Table 11: Emissions Sources Included in or Excluded from the Project Boundary

The proposed project and the power plants which are connected to the Turkish National Grid are included in the spatial extent of the project boundary.

#### **B.4.** Description of baseline and its development:

In respect of approved small scale methodology AMS-I.D "Grid Connected Renewable Electricity Generation, version 17", the baseline scenario is "the electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources into the grid."

Since the proposed project activity is "the installation of a new grid-connected renewable power plant/unit ", the baseline scenario is defined as the consolidation of electricity delivered to the grid by the project activity and electricity generated by the operation of grid-connected power plants in Turkey and electricity produced by the new generation sources as reflected in the combined margin (CM) calculations described in the "Tool to calculate the emission factor for an electricity system, ver. 02.2.1".

Installed electricity generation capacity in Turkey has reached 49524.1 megawatts (MW) as of 2010. Fossil fuels account for 65.18 % of the total installed capacity and hydro, geothermal, and wind account for the remaining 34.82%.<sup>41</sup>

| Primary Energy Source | MW      | % of Installed Capacity, 2010 |
|-----------------------|---------|-------------------------------|
| Thermal               | 32278.5 | 65.18%                        |
| Hydro                 | 15831.2 | 31.97%                        |
| Geothermal + Wind     | 1414.4  | 2.86%                         |
| TOTAL                 | 49524.1 | 100                           |

Table 12: Breakdown of Installed Capacity of Turkish Grid, 2010<sup>42</sup>

Based on the above can be concluded that hydro power constitutes the lower share of the total electricity generation capacity of Turkey.

Electricity demand of Turkey has been growing continuously since the last decade due to the rapid growth in economy. In 2010, the electricity demand was 210,434 GWh<sup>43</sup> which corresponds to an increase of 8.4% compared to the previous year. The increase or decrease rates for electricity are presented in Table 13 below.

| Year | Energy Demand (GWh) | % increase |
|------|---------------------|------------|
| 2001 | 126871              | -1.1       |
| 2002 | 132553              | 4.5        |
| 2003 | 141151              | 6.5        |
| 2004 | 150018              | 6.3        |
| 2005 | 160794              | 7.2        |
| 2006 | 174637              | 8.6        |
| 2007 | 190000              | 8.8        |
| 2008 | 198085              | 4.3        |
| 2009 | 194079              | -2.0       |
| 2010 | 210434              | 8.4        |

Table 13: The Energy Demand and Increase Rates between Years 2001-2010<sup>44</sup>

<sup>&</sup>lt;sup>41</sup> Retrieved from http://www.teias.gov.tr/istatistik2010/front%20page%202010-%C3%A7i%C3%A7ek%20kitap/kgucunkullan%C4%B1m(13-21)/13.xls

<sup>&</sup>lt;sup>42</sup> Retrieved from http://www.teias.gov.tr/istatistik2010/front%20page%202010-%C3%A7i%C3%A7ek%20kitap/kgucunkullan%C4%B1m(13-21)/13.xls <sup>43</sup> Retrieved from http://www.teias.gov.tr/istatistik2010/front%20page%202010-%C3%A7i%C3%A7ek%20kitap/uretim%20tuketim(22-45)/23.xls

<sup>&</sup>lt;sup>44</sup> Retrieved from http://www.teias.gov.tr/istatistik2010/front%20page%202010-%C3%A7i%C3%A7ek%20kitap/uretim%20tuketim(22-45)/23.xls

Even if the energy demand has decreased from 2008 to 2009, it must be noted that it is because of the fact that a significant economic crisis has occurred in 2008 and the energy consumptions decreased accordingly. Nonetheless, the energy demand was again increased in the year 2010 in line with the consideration of the capacity projection of TEIAS<sup>45</sup> (Refer to Figure 3 of this report).

In recent years, an upward trend has taken place in the consumption of natural gas in Turkey for both domestic and industrial use. The numerical increase in natural gas power plants aims to meet the growing energy demands of industries. Therefore, the share of hydroelectric power has dropped while the share of thermal energy has increased in overall energy generation <sup>46</sup>. Nevertheless, the European Union places great emphasis on green power in energy policies (hydroelectric, wind, solar, and biomass energies).<sup>47</sup> Thus, it is important to harmonize the energy policy and relevant legislation in Turkey with European energy policy. Consequently, the weight of hydroelectric power in overall generation needs to be increased.

Turkey, who intends to sustain its development, has tent to manage its energy supply-demand balance by the way of developing and constructing high capacity coal and natural gas power plants. The large natural resource availability, especially the abundance of economically accessible lignite and the governmental agreements on purchasing natural gas and accordingly developing infrastructure works promote the development of thermal power plants. In the absence of the proposed project activity, the same amount of electricity is required to be supplied by either the current power plants or by increasing the number of thermal power plants thus increasing GHG emissions.

According to the methodology AMS-I.D "Approved Small Scale Methodology for Grid Connected Renewable Electricity Generation, version 17" the baseline is the kWh produced by the renewable generating unit multiplied by an emission factor.

$$BE_{y} = EG_{BL,y} * EF_{CO_{2},grid,y}$$

Where:

| BE <sub>y</sub>     | = Baseline Emissions in year y $(tCO_2)$            |
|---------------------|-----------------------------------------------------|
| EG <sub>BL, y</sub> | = Energy baseline in year y (kWh)                   |
| EF <sub>CO2</sub>   | = $CO_2$ Emission Factor in year y (t $CO_2e/kWh$ ) |

Emission factor can be calculated in a transparent and conservative manner as a combined margin (CM), consisting of the combination of operating margin (OM) and build margin (BM) according to the procedures prescribed in the "Tool to calculate the emission factor for an electricity system, version 02.2.1".

<sup>&</sup>lt;sup>45</sup> Retrieved from http://www.teias.gov.tr/projeksiyon/KAPASITE%20PROJEKSIYONU%202010.pdf

<sup>&</sup>lt;sup>46</sup> Retrieved from http://www.dsi.gov.tr/english/service/enerjie.htm

<sup>&</sup>lt;sup>47</sup> Retrieved from http://www.thegreenpowergroup.org/policy.cfm?loc=eu

# **B.5.** Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered <u>small-scale</u> CDM project activity:

As required in the Gold Standard "Voluntary Emission Reductions Manuel for Project Developers", the project additionality is demonstrated through use of the "Tool for the demonstration and assessment of additionality, version 06.0.0".

## Step 1: Identification of alternatives to the project activity consistent with current laws and regulations realistic and credible alternative baseline scenarios for power generation

Realistic and credible alternatives to the project activity that can be a part of the baseline scenario are defined through the following steps:

#### Sub-step 1a: Define alternatives to the project activity

The alternative scenario may be the business-as-usual case (that is, the continuation of current emission levels in the absence of the CDM project activity), or it may be some other scenario which involves a gradual lowering of emissions intensity.

The alternatives to the proposed project activity are listed in the table below.

| Alternative A | Proposed project developed without the VER revenues                                                     |
|---------------|---------------------------------------------------------------------------------------------------------|
| Alternative B | The continuation of the current situation (no project activity & no other alternative undertaken)       |
| Alternative C | Construction of a thermal power plant with the same installed capacity or the same annual power output. |

Table 14: Alternatives to the project activity

Alternative A is the implementation of the project without carbon revenue.

Alternative B is the continuation of current situation, no project activity. Alternative B does not seem as a realistic option due to expected energy demand increase in Turkey. The energy demand of Turkey is expected to expand at an average of % 6.3- % 7 until 2018<sup>48</sup>. In addition; the Figure 3 below shows the energy demand projection (conservative scenario) between 2010 and 2019 prepared by TEIAS. Based on this fact, the electric generation of Turkey should be increased anyway in accordance with the expected energy demand. Therefore, "no action alternative" is not a plausible option and HEPPs should be constructed in order to generate clean energy where applicable.<sup>49</sup>

<sup>&</sup>lt;sup>48</sup> E. Kavukçuoğlu, Türkiye Elektrik Enerjisi Piyasası 2010-2011, Deloitte Turkey

<sup>&</sup>lt;sup>49</sup> Electrical Energy Production Planning Study on Turkey 2005-2010, TEIAŞ, www.teias.gov.tr





Figure 3: The Energy Demand Projection between 2010 and 2019 (Low Demand)<sup>50</sup>

The last alternative, Alternative C, is considered as a significant alternative to the project activity with respect to the baseline scenario. Since the share of thermal plants in the installed capacity of Turkey is considerably high which corresponds 65.18 %<sup>51</sup> of total installed capacity according to 2010 Turkish electrical statistics retrieved from official data of TEIAS (Turkish Electricity Transmission Company).



Figure 4: The distribution of installed capacity of Turkey by primary energy sources in 2010<sup>52</sup>

#### **Outcome of Step 1a**

Three alternatives are considered for the proposed project. However due to the increasing electricity demand in Turkey, Alternative B, which is the continuation of the current situation is an unrealistic option. Therefore, Alternatives A and C are the two alternatives to be evaluated.

<sup>&</sup>lt;sup>50</sup> Retrieved from http://www.teias.gov.tr/projeksiyon/KAPASITE%20PROJEKSIYONU%202010.pdf, Page 13

<sup>&</sup>lt;sup>51</sup> Retrieved from http://www.teias.gov.tr/istatistik2010/front%20page%202010-%C3%A7i%C3%A7ek%20kitap/kgucunkullan%C4%B1m(13-

<sup>21)/13.</sup>xls <sup>52</sup> Retrieved from http://www.teias.gov.tr/istatistik2010/front%20page%202010-%C3%A7i%C3%A7ek%20kitap/kgucunkullan%C4%B1m(13-21)/13.xls

#### Sub-step 1b: Consistency with mandatory laws and regulations

The following applicable mandatory laws and regulations have been identified:

- 1. Electricity Market Law [Law Number: 4628 Ratification Date: 20.02.2001 Enactment Date: 03.03.2001]<sup>53</sup>
- Law on Utilization of Renewable Energy Resources for the Purpose of Generating Electricity Energy [Law Number: 5346 Ratification Date: 10.05.2005 Enactment Date: 18.05.2005]<sup>54</sup>
- **3.** Environment Law [Law Number: 2872 Ratification Date: 09.08.1983 Enactment Date: 11.08.1983]<sup>55</sup>
- 4. Energy Efficiency Law [Law Number 5627, Enactment Date 02/05/2007]<sup>56</sup>
- 5. Forest Law [Law Number 6831, Enactment Date 31/08/1956]<sup>57</sup>

All the alternatives to the project outlined in Step 1a above are in compliance with applicable laws and regulations.

#### Outcome of Step 1b

Mandatory legislation and regulations for each alternative are taken into account in sub-step 1b. Based on the above analysis, the proposed project activity is concluded not to be the only alternative amongst the ones considered by the project participants that is in compliance with mandatory regulations.

#### Step 2: Investment analysis

The investment analysis for Kuzkaya Weir and HEPP Project in this Step 2 will be evaluated the following the four sub-steps:

- (i) Determine appropriate analysis method;
- (ii) Apply analysis method;
- (iii) Calculation and comparison of financial indicators;
- (iv) Sensitivity analysis.

#### Sub-step 2a: Determine appropriate analysis method

The "Tool for the demonstration and assessment of additionality, version 06.0.0" lists three possible analysis methods;

- Option I. Simple cost analysis;
- Option II. Investment comparison analysis; and
- Option III. Benchmark analysis.

<sup>&</sup>lt;sup>53</sup> Retrieved from http://www.epdk.gov.tr/english/regulations/electricity.htm

<sup>&</sup>lt;sup>54</sup> Retrieved from http://www.eie.gov.tr/duyurular/YEK/LawonRenewableEnergyReources.pdf

<sup>55</sup> Retrieved from http://rega.basbakanlik.gov.tr

<sup>&</sup>lt;sup>56</sup> Retrieved from http://www.eie.gov.tr/english/announcements/EV\_kanunu/EnVer\_kanunu\_tercume\_revize2707.doc

<sup>&</sup>lt;sup>57</sup> Retrieved from http://web.ogm.gov.tr/birimler/merkez/kadastro/Dokumanlar/KDI/Mevzuat/6831%20ORMAN%20KANUNU.pdf

Option I cannot be used, since the financial and economic benefits generated by the proposed project activity.

Between Option II and Option III, benchmark analysis method (Option III) is preferred as the investment analysis method for the proposed project.

#### Sub-step 2b: Option III. Apply benchmark analysis

To select or calculate a benchmark with reliable and valid is very difficult in due to the market volatility (government bond rates etc.), its changes over time and project type has its own characteristics (supply, demand, price etc.). Institutional capacity is necessary for these calculations. In this regard, the recognized and accepted widely the calculations (indicators) of international institutions (WB, IMF, UNCTAD, IFF etc.) can be used as benchmark. Since this IRR refers to small Hydropower plant in the republic of Turkey, the Equity IRR of World Bank can be used which is 15% for small hydro.<sup>58</sup> This accepted benchmark IRR provides a more accurate and conservative view of the investment analysis effort. Eventually, the benchmark (15%) will be applied for comparison with the equity IRR determined in this investment analysis of the Kuzkaya Weir and HEPP project.

As is known, there are also benchmarks for other countries in the appendix of "Guidelines on the assessment of investment analysis, version 05" When it is seen, the highest benchmark is %18 and the lowest benchmark is %10.5 among the lots of countries. In this Tool, the benchmark IRR (The expected return on equity) is composed of four elements: (a) a risk free rate of return; (b) an equity risk premium; (c) a risk premium for the host country; and (d) an adjustment factor to reflect the risk of projects in different sectoral scopes. All values are expressed in real terms.

#### Sub-step 2c: Calculation and comparison of financial indicators

The internal rate of return (IRR) calculation is a convenient technique for Kuzkaya Weir and HEPP Project in benchmark analysis. As it is known, IRR is a percentage figure that describes the yield or return of an investment over a multiyear period. For a given series of cash flows, the IRR is the discount rate that results in a net present value (NPV) of zero.

All the main parameters of project and other relevant financial items used in the equity IRR calculation is taken from the Feasibility Report of Kuzkaya Weir and HEPP and legal norms. Likewise, some items (corporate tax, tax deduction, tax exemption, etc.) are including for IRR calculation in line with the suggestion in "Tool for the demonstration and assessment of additionality".

| Parameters                     | Unit | Data Value    |
|--------------------------------|------|---------------|
| Installed Capacity             | MWe  | 6.518         |
| Electricity Generated          | MWh  | 19,899        |
| VAT amount                     | USD  | 1,324,862.05  |
| Investment Cost (VAT included) | USD  | 10,967,289.78 |

| Table 13. Main Larameters Used for investments Analysis |
|---------------------------------------------------------|
|---------------------------------------------------------|

UNECC

<sup>&</sup>lt;sup>58</sup> Retrieved from World bank-Project Appraisal Document on a IBRD Loan and a Proposed Loan from Clean Technology Fund to TKSB an TB with the Guarantee of Turkey (Report No: 46808-TR, dated May 1, 2009)

| Feed-in Tariff         | USD/KWh    | 7.3  |
|------------------------|------------|------|
| Expected VER price     | €/ tCO2-eq | 5    |
| EURO/USD <sup>59</sup> | -          | 1.19 |

The main parameters and items were gathered at the table above which was used in IRR calculations.

#### (i) The cash outflow; investment cost, operational and maintenance cost and renewal cost

Costs can be classified into three categories in line with the referred Feasibility Study. These are investment costs, operational and maintenance cost and renewal cost. The State Hydraulic Works (DSI) annually publishes the estimated unit prices of construction of units to be used at the Feasibility Study Reports conducted in Turkey.

There are two types of costs calculated within the Feasibility Study. One is the cost based on DSI (State Hydraulic Works) unit prices which calculation is obligatory by DSI for conducting a Feasibility Study. The other one is calculated as 25% discounted. The unit prices of DSI are reduced with a rate 25%. Hence the costs of relevant units are reduced. (The cost of land acquisition, energy transmission line and electromechanical equipment are not reduced since they are not estimated by using DSI unit prices.)<sup>60</sup> In fact, they are estimated with respect to the surveys/studies and real cost at the market.

The investment cost with 25% reduction is preferred for IRR analysis of Kuzkaya Weir and HEPP project in a conservative manner.

The following table gives the cost of units,

| ) |
|---|
| ) |

| Project Units                                    | Investment Cost Total<br>(USD) |
|--------------------------------------------------|--------------------------------|
| Roads (3km)                                      | 116,290.99                     |
| Construction site                                | 54,107.34                      |
| Derivation                                       | 84,613.51                      |
| Kuzkaya 1-2 Weirs                                | 1,047,979.68                   |
| Water intake structures and sedimentation basins | 854,758.76                     |
| Transmission Channels (Ltotal=9430m)             | 3,369,073.68                   |
| Transmission Channels Engineering structures     | 168,453.43                     |
| Head ponds and penstock water intake structures  | 716,825.83                     |
| Penstocks                                        | 365,592.20                     |
| Power houses (6.518 MWe)                         | 389,238.87                     |
| Electromechanical Equipment                      | 1,568,775.71                   |
| Energy Transmission Line (34.5kV,9km)            | 317,624.98                     |
| Land Acquisition                                 | 589,101.73                     |

<sup>&</sup>lt;sup>59</sup> The exchange rate of eruo to TL on June 1,2010 was used for conversion to be in line with the submission date of the feasibility study to DSI (State Hydraulic Works). The exchange rate was retrieved from Turkish Central Bank as an official and reliable source

<sup>(</sup>http://www.tcmb.gov.tr/kurlar/201006/01062010.html). For USD to TL, the unit prices of DSI (State Hydraulic Works) for the year 2010 was used retrieved from the Kuzkaya Weir and HEPP, Feasibility Study Report, section 8.1 <sup>60</sup> Kuzkaya Weir and HEPP, Feasibility Study Report, section 8.2

| Investment Cost       | 9,642,436.73  |
|-----------------------|---------------|
| VAT                   | 1,324,862.05  |
| Investment Cost + VAT | 10,967,298.78 |

*Source: Kuzkaya Weir and HEPP, Feasibility Study Report, Table 8.6 Note: Please follow the IRR calculations excel sheet for more details.* 

While it is not considered value add tax in the feasibility report, VAT was included into the investment costs to be more realistic and conservative. It is important to note that electromechanical equipment cost is exempt from VAT by-law<sup>61</sup>. The VAT ratio is 18% in according to the Value Added Tax Law (no: 3065, Official Gazette No 18563, dated 02/11/1984; put into force on 01/01/1985) and applied to investment cost of units.

In accordance with the conducted Feasibility Study Report of the proposed project, the expense of operation and maintenance cost is tabulated below;

 Table 17: The Operation and Maintenance Cost (USD) of Kuzkaya Weir and HEPP

| Units                                            | Operation and Maintenance Cost<br>(USD) |  |
|--------------------------------------------------|-----------------------------------------|--|
| Roads (3km)                                      | 850                                     |  |
| Construction site                                | 395                                     |  |
| Derivation                                       | 309                                     |  |
| Kuzkaya 1-2 Weirs                                | 7,993                                   |  |
| Water intake structures and sedimentation basins | 6,681                                   |  |
| Transmission Channels (Ltotal=9430m)             | 53,106                                  |  |
| Transmission Channels Engineering structures     | 1,328                                   |  |
| Head ponds and penstock water intake structures  | 6,047                                   |  |
| Penstocks                                        | 6,216                                   |  |
| Power houses (6.518 Mwe)                         | 3,259                                   |  |
| Electromechanical Equipment                      | 19,554                                  |  |
| Energy Transmission Line (34.5kV,9km) 4,050      |                                         |  |
| Land Acquisition                                 | 0                                       |  |
| TOTAL                                            | 109,788                                 |  |

*Source: Kuzkaya Weir and HEPP, Feasibility Study Report, Table 8.6 Note: Please follow the IRR calculations excel sheet for more details.* 

The renewal cost is given as below in the Feasibility Study Report;

#### Table 18: The Renewal Cost of Units (USD) of Kuzkaya Weir and HEPP

| Units             | Renewal Cost<br>(USD) |
|-------------------|-----------------------|
| Roads (3km)       | 2                     |
| Construction site | 73                    |
| Derivation        | 2                     |
| Kuzkaya 1-2 Weirs | 26                    |

28

<sup>&</sup>lt;sup>61</sup> Full exemption of delivery of machine and equipment referred in Investment Incentive Certificates (VAT Law no 3065, Article 13)

| Water intake structures and sedimentation basins | 22    |
|--------------------------------------------------|-------|
| Transmission Channels (Ltotal=9430m)             | 87    |
| Transmission Channels Engineering structures     | 4     |
| Head ponds and penstock water intake structures  | 20    |
| Penstocks                                        | 253   |
| Power houses (6.518 Mwe)                         | 602   |
| Electromechanical Equipment                      | 5,394 |
| Energy Transmission Line (34.5kV,9km)            | 439   |
| Land Acquisition                                 | 0     |
| TOTAL                                            | 6,925 |

Source: Kuzkaya Weir and HEPP, Feasibility Study Report, Table 8.6

Hence, the total annual expense is calculated as 116,713 USD (109,788 USD + 6,925 USD).

#### (ii) The cash inflow

The primary legislation for a reasonable projection of income stream is the "Law on Utilization of Renewable Energy Resources for the Purpose of Generating Electrical Energy (No.5346)". According to Law, the renewable energy producers can sell its electricity to TEIAS on an estimated price which is 7.3 USD/KWh. 1 USD =  $1.60 \text{ TL}^{62}$  and 1 EURO =  $1.92 \text{ TL}^{63}$  (exchange selling rate).

The annual electricity generation has been taken as 19,899 MWh.

Correspondingly; the annual income will be 1,452,627 USD. It is assumed constant selling price of electricity during the 44 years of operation.

#### (iii) Earnings before Interest, Depreciation (EBITD)

These gross earnings figures are stated in the excel sheet.

#### (iv) Depreciation

Depreciation related to the project, which has been deducted in estimating EBITD, added back to net profits in line with the suggestion in "Tool for the demonstration and assessment of additionality".

#### (v) Interest Expenses and Financial Structure

In this project finance, capital structure is 25% debt and 75% capital. 2,806,180.76 USD is used as loan to finance this Project.

#### (vi) Deduction of Input VAT

<sup>&</sup>lt;sup>62</sup> Defined value by State Hydraulic Works, retrieved from conducted Kuzkaya Weir and HEPP Feasibility Study Report, section 8.1

<sup>&</sup>lt;sup>63</sup> The exchange rate on June 1,2010 was used for conversion to be in line with the submission date of the feasibility study to DSI (State Hydraulic Works). The exchange rate was retrieved from Turkish Central Bank as an official and reliable source (http://www.tcmb.gov.tr/kurlar/201006/01062010.html). The measures in the feasibility study were used as the input data of IRR calculations.

Project participant has the right to deduct input VAT of investment cost. Paid input VAT in the investment period is deducted from tax of income in the following years.<sup>64</sup> VAT is 18% as per the VAT Law no: 3065.

#### (vii) Instalment Payment

Repayments of principal are stated in the excel sheet.

#### (viii) Net Cash Flow

Net Cash Flow = Net Earnings + Depreciation + Deduction (Netting) of Input VAT - Instalment payment

#### (ix) Net Present Value (NP) and Equity IRR

For a given series of net cash flows (the difference between the present value of cash inflows and cash outflows), Equity IRR of the Kuzkaya Weir and HEPP Project 14.09% is the discount rate that results in an NPV of zero (without considering the carbon revenue).

With respect to "Guidelines on the Assessment of Investment Analysis", version 04; the salvage value of project activity assets at the end of the assessment period should be included as a cash inflow in the final year. Hence, the salvage value was calculated in accordance with local accounting regulations and included as a cash inflow in the final year.

However, as per *4628 numbered Law* of Turkish Legislations, at the end of electricity production license as of 49 years, the project activity with all units shall be granted to government with no salvage value. Hence, in reality, the salvage value of project activity assets will be not be given to project owner.

When we consider to today's technology, high capital stock will be transferred from Project to the public contributing to public welfare. Therefore, this salvage value can be seen positive impact on community (public utility) in terms of sustainability development matrix.

#### (x) Equity IRR, VER income and the Benchmark

As is mentioned above, Equity IRR has been calculated as 14.09% without considering the carbon revenue. When benchmark IRR is taken as 15%, the Project is not financially attractive. We consider 5 euro as VER Sales Unit Price (conservative prediction).

With the addition of the carbon revenues in the cash flows, the Equity IRR increases to 14.75%. The IRR even with VERs remains lower than the benchmark of 15%.

In conclusion, the Equity IRR is 14.09 % and turns to 14.75 % by the addition of VER revenues. Since the benchmark is accepted as 15 %, the calculated IRRs express the project is not attractive financially.<sup>65</sup>

<sup>&</sup>lt;sup>64</sup> Please see the excel sheet of IRR analysis.

<sup>&</sup>lt;sup>65</sup> Please follow the excel sheet of IRR analysis.

#### Sub-step 2d: Sensitivity Analysis

The sensitivity analysis assessed to shows whether the conclusion regarding the financial/economic attractiveness is robust to reasonable variations in the critical assumptions.

The parameters are applied as investment cost, operation and maintenance cost, electricity price and amount of electricity generated which are assessed below.

#### (i) Investment Cost;

The 10% increase and 10% decrease were applied to investment cost of Equity IRR analysis, respectively. With respect to the amount of decrease or increase in the costs, the loan amount should be decreased or increased with same ratio, which was demonstrated in the IRR excel sheet as well.

Furthermore, in accordance with the decrease or increase in the cost, the VAT amount was decreased or increased. Hence, the distribution of netting of VAT by years should be reconsidered to give the total VAT amount which was decreased or increased.

#### (ii) Operation and Maintenance Cost;

The 10% increase and 10% decrease were applied to operation and maintenance cost of Equity IRR analysis for all operational years of project, respectively.

#### (iii) Electricity Price and Amount of Electricity Generated;

The 10% increase and 10% decrease were applied to income flow of Equity IRR analysis, respectively. The income has two variables; amount of electricity generated and unit price of electricity.<sup>66</sup> Therefore, income can be a parameter just by the way of variation in these 2 variables, which means that the increase in income can be a result of either increase in amount of electricity generated or increase in unit price of electricity. The decrease in income can be a result of either decrease in amount of electricity generated or decrease in unit price of electricity.

In line with the variation of income, netting of VAT amount should be changed, since the amount of netting of VAT in year y was the 18% of revenue in year y. The consideration of variation in netting of VAT amount was applied to the IRR sensitivity analysis (when income increase or decrease 10%).

| Sensitivity Analysis       |               |               |  |  |  |  |  |
|----------------------------|---------------|---------------|--|--|--|--|--|
| Parameter when             | increases 10% | decreases 10% |  |  |  |  |  |
| Investment cost            | 12.14%        | 15.03%        |  |  |  |  |  |
| Operation maintenance cost | 13.26%        | 13.64%        |  |  |  |  |  |
| Electricity price          | 15.06%        | 11.81%        |  |  |  |  |  |

Table 19: The Results of Sensitivity Analysis to Equity IRR of Kuzkaya Weir and HEPP project

<sup>66</sup> Income = electricity generated ( KWh) x unit price of electricity (USD/KWh)

| Electricity generation             | 15.06%        | 11.81%        |  |  |  |
|------------------------------------|---------------|---------------|--|--|--|
| Sensitivity Analysis including VER |               |               |  |  |  |
| Parameter when                     | increases 10% | decreases 10% |  |  |  |
| Investment cost                    | 12.74%        | 15.77%        |  |  |  |
| Operation maintenance cost         | 13.93%        | 14.31%        |  |  |  |
| Electricity price                  | 15.73%        | 12.48%        |  |  |  |
| Electricity generation             | 15.80%        | 12.41%        |  |  |  |

It may be seen from the sensitivity analysis that the 46 years Equity IRR value for the proposed project activity is less than the benchmark IRR (15%). Likewise, this analysis has not been considered macro risks (a projection about budget deficits, current account deficits, saving deficits, public and private debt stock etc. of Turkey economy) as well as micro risks (project, sectoral etc.).

#### Outcome of Step 2:

The investment and sensitivity analysis shows that the VER revenues will improve the Equity IRR and make the project more attractive for investors. Considering that figures above do not precisely reflect the investment risk (systematic and unsystematic risks) the role of the carbon income is significant to enable the project to proceed and for a favourable investment decision taken. Based on the analysis and information above, it is concluded that investing in the project is not the most attractive option considering the alternative investment opportunities. Therefore, Project can be considered as additional to the baseline scenario.

#### Step 3: Barrier analysis

The barrier analysis step has not been applied for the proposed project.

#### Step 4: Common practice analysis

The step 4 of "Tool for the demonstration and assessment of additionality, version 06.0.0" was applied for common practice analysis. This section includes the analysis of the extent to which the proposed project type (e.g. technology or practice) has already diffused in the relevant sector and region.

The existing common practice is discussed through the following sub-steps.

#### Sub-step 4a: Analyse other activities similar to the proposed project activity:

At the moment, 796 licenses for hydro power plants are issued by EMRA<sup>67</sup>, the "Electricity Market Regulation Agency". 422 of the HEPPs are small-scale projects which have installed power in-between 1 MW and 15MW (included). 10 of these small scaled HEPPs are owned by EÜAŞ. The 297 of these 412 HEPPs are in construction stage.<sup>68</sup> The 91 of these 412 are operating. Recently, there are accumulated installed capacities of HEPPs those are under

<sup>&</sup>lt;sup>67</sup> Retrieved from http://www2.epdk.org.tr/lisans/elektrik/lisansdatabase/verilentesistipi.asp

<sup>&</sup>lt;sup>68</sup> Retrieved from http://www2.epdk.org.tr/lisans/elektrik/proje/yenilenebilir.xls

construction in Turkey. Based on the EMRA data, for small scale HEPPs, the operating ones are accounted less than 22 % of the total number of licensed small scale HEPPs in Turkey.

In the light of completion ratio of HEPPs, the below identifies that the condition of project development which was updated at September 2010 by EMRA and arranged in accordance with relevant factors;

| Status                                                                           | Number of HEPP project |  |
|----------------------------------------------------------------------------------|------------------------|--|
| Small scale HEPP project licensed                                                | 412                    |  |
| Small scale HEPP licensed and on-going construction                              | 297                    |  |
| Small scales operating                                                           | 91                     |  |
| Licensed but not operating (under construction or do not start construction yet) | 321                    |  |
| (80-100) % completion of projects                                                | 18                     |  |
| (60-80)% completion of the project                                               | 14                     |  |
| (40-60)% completion of project                                                   | 22                     |  |
| (20-40)% completion of project                                                   | 34                     |  |
| (0-20)% completion of project                                                    | 151                    |  |

| Table 20: Number          | of HEPP             | Facilities | Licensed t | o Private | Production | Companies | and | Completed | Over | a |
|---------------------------|---------------------|------------|------------|-----------|------------|-----------|-----|-----------|------|---|
| <b>Certain Completion</b> | Ratio <sup>69</sup> |            |            |           |            |           |     |           |      |   |

The table above shows that, 32 of the HEPP projects were completed with a ratio higher than 60%, which means that only (32/321\*100) 9.9% of the HEPPs under construction could achieve a higher completion ratio than 60%. Therefore, it results in that the electricity generation from HEPP business is not a common practice.

The construction phase generally last longer than what was defined at the feasibility study before. The reason of this can be the unexpected conditions which cannot predicted before, higher work load, topographical conditions, problems in design, changes in design, problems of employees or climatic conditions etc. The reasons may base on the inexperienced and copied designing of HEPPs which result in the obstruction of development of HEPP project easily and becoming wide-spread. By this sense, the electricity generation from HEPP business is not a common practice.

As a part of its energy policy, Turkey started a liberalization process in its electricity market in 90's. Formerly, all energy plants but especially the HEPPs have been built and operated by the State. EUAŞ – Electricity Generation Company was responsible from increasing of installed capacity of Turkey. The liberalization process commenced with electricity production although is not completed yet, however full privatization of state-owned distribution assets is completed.

Participation of private sector in the electricity generation from hydro-electrical power plant market is a new concept in Turkey. Since, the increasing energy demand cannot be afforded by the State in consequence of the high investment and operation cost of required additional power plants, the State started to outsource the construction of those plants through licenses at 2001.

<sup>69</sup> Retrieved from http://www2.epdk.org.tr/lisans/elektrik/proje/yenilenebilir.xls

UNFCCO

#### CDM – Executive Board

The aim is to face the growing demand for electricity and provide the capital to realize hydro investment. Until the renewable energy law was enacted in 2001, the companies had not been responsible for the whole process (planning and financing of the project, choosing the technology and operating of HEPPs) and not taken all the risks.



Figure 5: The share of installed capacities of Turkey by production utilities in the years 2006 and 2010<sup>70</sup>

The share of capacity of EÜAŞ to the total installed capacity of Turkey is 49% in the year 2010 which was 58% in the year 2009. The figure above expresses the development of private sector contributed installed capacity of Turkey between the years 2006-2010.

Another table shows; the diffusion of private sector to electricity production sector and tabulates the installed capacities of Turkey contributed by private companies for thermal and renewable resources within the last 4 years.

| Table 21: Annual development of Turkey's installed capacity produced by private companies and the share          |
|------------------------------------------------------------------------------------------------------------------|
| of Renewable Energy capacity development by private companies to Turkey's installed capacity. (MW) <sup>71</sup> |

|                                                  |                                                                                                       | 2007      | 2008      | 2009      | 2010      |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|
| Installed Capacity by Private<br>Production comp | Thermal                                                                                               | 10,688.80 | 11,208.90 | 13,421.00 | 16,273.20 |
|                                                  | Hydro + Geothermal + Wind                                                                             | 1,624.30  | 2,181.50  | 3,168.70  | 4,992.20  |
|                                                  | Total                                                                                                 | 12,313.10 | 13,390.40 | 16,589.70 | 21,265.40 |
|                                                  | The percentage of renewable energy<br>resourced installed capacity in total<br>installed capacity (%) | 13.20     | 16.30     | 19.10     | 23.48     |
| Total Installed Capacity of Turkey               | Thermal                                                                                               | 27,271.60 | 27,595.00 | 29,339.10 | 32,278.50 |
|                                                  | Hydro + Geothermal + Wind                                                                             | 13,564.10 | 14,222.20 | 15,422.10 | 17,245.60 |
|                                                  | Total                                                                                                 | 40,835.70 | 41,817.20 | 44,761.20 | 49,524.10 |
|                                                  | The percentage of renewable energy resourced installed capacity in total                              |           |           |           |           |
|                                                  | installed capacity (%)                                                                                | 33.20     | 34.00     | 34.50     | 34.82     |

<sup>&</sup>lt;sup>70</sup> Retrieved from http://www.teias.gov.tr/istatistik2010/front%20page%202010-%C3%A7i%C3%A7ek%20kitap/kguc(1-12)/6.xls

<sup>&</sup>lt;sup>71</sup>Retrieved from http://www.teias.gov.tr/istatistik2010/front%20page%202010-%C3%A7i%C3%A7ek%20kitap/kguc(1-12)/6.xls

| The percentage of renewable energy resourced installed capacity of private production companies to Turkey's total renewable energy sourced installed |       |       |       |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|
| capacity (%)                                                                                                                                         | 12.00 | 15.30 | 20.50 | 28.95 |
| The percentage of renewable energy resourced installed capacity of private                                                                           |       |       |       |       |
| production companies to Turkey's total installed capacity (%)                                                                                        |       | 5.22  | 7.08  | 10.08 |

To sum up, the contribution of renewable energy produced by private production companies to Turkey's total renewable energy production is 28.95 % in 2010. Most of the private companies in Turkey have little experience and know-how on the management and operation of HEPPs - also renewable energy sources -. Moreover, the private companies that invest in HEPPs in Turkey are generally active in other sectors like textile, cement etc. <sup>72</sup> The lower ratio express that the renewable energy contributed to installed capacity of Turkey by privates companies is a new concept for Turkey and is not a common practice.

In addition to that, thermal power generation is still preferred by both private and state owned companied in Turkey. The Figure 6 shows that thermal power plants have shown a rapid growth in parallel with the demand for electricity whereas hydroelectric power generation has grown at a far slower rate. Furthermore, the ratio of installed capacity resourced from hydro power and thermal power to Turkey's total installed capacity having an inverse relationship can be seen in Figure 7 below.



Figure 6: Annual development of Turkey's Installed Capacity<sup>73</sup>

<sup>&</sup>lt;sup>72</sup> Retrieved from http://e-imo.imo.org.tr/Portal/Web/new/uploads/file/menu/HESRapor.pdf

<sup>&</sup>lt;sup>73</sup> Retrieved from http://www.teias.gov.tr/istatistik2010/front%20page%202010-%C3%A7i%C3%A7ek%20kitap/kguc(1-12)/3.xls



Figure 7: Percentage of annual development of Turkey's Thermal and Hydro Power Installed Capacity to Total Capacity <sup>74</sup>

In reference to "Tool for the demonstration and assessment of additionality, version 06.0.0"; "Projects are considered similar if they are in the same country/region and/or rely on a broadly similar technology, are of a similar scale, and take place in a comparable environment with respect to regulatory framework, investment climate, access to technology, access to financing, etc. and the following discussion is on similar project activities." The HEPPs was tabulated below with respect to owner, certain status, licensing date, installed capacities and completion rate in accordance with the "Tool for the demonstration and assessment of additionality, version 06.0.0".

The total number of small-scale projects located at Kastamonu Province is ten (please see Table 22 below). The Kuzkaya Weir and HEPP project is also included in this number. There are two HEPPs which were completed. The completion ratios of other current investments are very low owing to project/location specific barriers or unfavorable usage of investment funds by companies. The completed ones; Başak Weir and HEPP and Yavuz Weir and HEPP are listed under VER projects at Gold Standard official web page. The Berke, Kuzkaya and Zala Weir and HEPP projects are listed, as well.

| Name of the HEPP-<br>Creek        | Company Name                     | Status                        | Licensing date | Capacity<br>(MWm) | Completion<br>(%) |
|-----------------------------------|----------------------------------|-------------------------------|----------------|-------------------|-------------------|
| Başak Weir and HEPP -<br>Kapısuyu | Nisan Enerji San. Tic. A.Ş.      | Licensed<br>- in<br>operation | 06/03/2008     | 7.285             | 100               |
| Berke Weir and HEPP-<br>Aydos     | Eser En. Ür. A.Ş.                | Licensed                      | 02/04/2008     | 6.4               | 84.6              |
| Yavuz Weir and HEPP-<br>Küre      | Arem En.Ür. A.Ş.                 | Licensed                      | 08/05/2008     | 5.6               | 100               |
| Kemal Weir and HEPP-<br>Karaçay   | Arısu Enerji San. Tic. Ltd. Şti. | Licensed                      | 16/12/2008     | 7.6               | 3.5               |
| Akkaya Weir and HEPP-<br>Akkaya   | MED En. A.ş.                     | Licensed                      | 05/03/2009     | 4.6               | 2.9               |

Table 22: The small scale HEPP project already licensed at and near the Kastamonu Province

<sup>&</sup>lt;sup>74</sup> Retrieved from http://www.teias.gov.tr/istatistik2010/front%20page%202010-%C3%A7i%C3%A7ek%20kitap/kguc(1-12)/3.xls
| Yunuslar I-II HEPP<br>-Akçay       | Hes En. Ür. San. Tic. A.Ş.                 | Licensed | 09/06/2010 | 8.1  | 4.5 |
|------------------------------------|--------------------------------------------|----------|------------|------|-----|
| Demirci Weir and HEPP-<br>Gökırmak | Demirci En. Yat. Ür. İnş. Tic.<br>A.Ş.     | Licensed | 30/09/2010 | 13.1 | 7.8 |
| Zala Weir and HEPP-<br>Araç        | Ahmet Hakan El. Ür. A.Ş.                   | Licensed | 02/12/2010 | 5.8  | 5.6 |
| Samatlar HEPP- Araç                | Rak İnş. Tur. Demir San. Tic.<br>Ltd. Şti. | Licensed | 28/04/2011 | 6.0  | -   |
| Kuzkaya Weir HEPP-<br>Araç         | Murat Hakan El. Ür. A.Ş                    | Licensed | 12/05/2011 | 6.7  | -   |

\*Condition in July 2011

Thus, most of the private companies in Turkey have little experience and know-how on the management and operation of HEPPs - also renewable energy sources -. Moreover, the private companies that invest in HEPPs in Turkey are generally active in other sectors like textile, cement etc.<sup>75</sup> The low ratio of private companies in the power generation sector proves that HEPP project implementation by private companies is not a common practice for Turkey.

### Sub-step 4b: Discuss any similar options that are occurring

There may be problems which cannot be predicted before the implementation of construction because of the lack of experience of HEPP projects. Hence, there may be difficulties in completing the project which prevent the spread of HEPP projects. The participation of private sector in the electricity generation from hydro-electrical power plant market is a new concept in turkey. These inexperienced companies expect to have high profits. However, due to various limitations or unforeseen problems, the completion of the project is delayed. Because of this risky situation, thermal/natural gas power generation is still preferred by private companies in Turkey in spite of the incentives given to renewable energy resourced power generation facilities. In Turkey, the legal and financial incentive mechanisms are found inadequate for investors and NGO's.<sup>76 77</sup> For these reasons, the completion ratio of current investments is very low.

Besides the lower completion ratio of projects, there are mercantile risks with respect to recent amendments in financial market, credit availability/compression and political uncertainty.

In this regard, the preference of non-renewable power generation and difficulties in completion of projects indicate that, the small or large scale hydro power is not a common practice in Turkey. Obviously, the VER revenues alleviate the financial obstacles and affect the investor positively.

Furthermore, the low contribution of hydro power projects to total installed capacity of Turkey and similar HEPP projects which benefit from VER revenues corroborate that electricity generation from hydro power is not a common practice, especially without considering VER revenues.

<sup>75</sup> Retrieved from http://e-imo.imo.org.tr/Portal/Web/new/uploads/file/menu/HESRapor.pdf

<sup>&</sup>lt;sup>76</sup> Renewable Energy Project, WWF, 2011, http://www.wwf.org.tr/pdf/yenilenebilirenerjiproje.pdf

<sup>&</sup>lt;sup>77</sup> Ela Uluatam, TOBB, *AB Proje Geliştirme ve İzleme Müdürlüğü*,

http://www.tobb.org.tr/AvrupaBirligiDairesi/Dokumanlar/Raporlar/YenilenebilirEnerjiTesvikleri.pdf

(1)

### CDM – Executive Board

# Outcome of common practice analysis:

As a result, the low rate of completion of the projects, the low contribution privately held hydro projects and also the implementation of the same type of projects in the same region with VER revenues confirm that the barriers elaborated above decrease or limit the investments to HEPPs and other renewable energy sourced power plants. This in turn shows that the electricity generation from HEPP business is not a common practice in Turkey. Therefore Step 4 is satisfied and the proposed project is additional.

### **B.6.** Emission reductions:

### **B.6.1.** Explanation of methodological choices:

This project follows the methodology described in the AMS-I.D "Approved Small Scale Methodology for Grid Connected Renewable Electricity Generation, version 17".

Selected methodology has been applied together with the "Tool to calculate the emission factor for an electricity system, version 02.2.1" and "Tool for the demonstration and assessment of additionality, version 06.0.0".

According to AMS-I.D;

The *baseline scenario* is that the electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources into the grid.

The *baseline emissions* are the product of electrical energy baseline  $EG_{BL,y}$  expressed in MWh of electricity produced by the renewable generating unit multiplied by the grid emission factor.

$$BE_y = EG_{BL,y} * EF_{CO_2,grid,y}$$

Where:

| BE.         | =Baseline | Emissions | in year y | v (t CO <sub>2</sub> ) |
|-------------|-----------|-----------|-----------|------------------------|
| $D_{U_{v}}$ |           |           | 5 2       | - ( 2)                 |

 $EG_{BL,y}$  =Quantity of net electricity supplied to the grid as a result of the implementation of the CDM project activity in year y (MWh)

 $EF_{CO2 \text{ orid } y}$  =CO<sub>2</sub> emission factor of the grid in year y (t CO<sub>2</sub>/MWh)

The emission factor can be calculated in a transparent and conservative manner as follows:

(a) A combined margin (CM), consisting of the combination of operating margin (OM) and build margin (BM) according to the procedures prescribed in the "Tool to calculate the Emission Factor for an electricity system";

In order to calculate the combined margin the following six steps shall be applied as per "Tool to calculate the emission factor for an electricity system, version 02.2.1".

### Step1. Identify the relevant electricity systems;

Turkey the host country is not participating in the compliance market, hence although it has a focal point to UNFCCC it does not have a structured DNA, a description of the project electricity system and a connected electricity systems has not been published.

For such cases, the following criteria are suggested to be used as per tool to determine the existence of significant transmission constraints:

- In case of electricity systems with spot markets for electricity: there are differences in electricity prices (without transmission and distribution costs) of more than 5% between the systems during 60% or more of the hours of the year;
- The transmission line is operated at 90% or more of its rated capacity during 90% or more of the hours of the year.

Since no spot electricity market is available in Turkey, as suggested in the first criterion; hence, this criterion is not viable.

Besides, there is no published data on capacity usage of transmission lines; the second criterion could not be proved.

As suggested in "Tool to calculate the emission factor for an electricity system, version 02.2.1", "if these criteria do not result in a clear grid boundary, use a regional grid definition in the case of large countries with layered dispatch systems (e.g. provincial / regional / national). A provincial grid definition may indeed in many cases be too narrow given significant electricity trade among provinces that might be affected, directly or indirectly, by a CDM project activity. In other countries, the national (or other larger) grid definition should be used by default. "

However, there are no layered dispatch systems in the host country; Turkey. As a result the "Turkish national grid" was used as the "project electricity system". For the case of the proposed project "the project electricity system" and "the connected system" are the same. As also confirmed by TEIAS (Turkish Electricity Transmission Company Inc.), the Turkish transmission system is interconnected.<sup>78</sup> There is no independent or regional grid system in any region of Turkey.

Hence, the connected electricity system and project electricity system comprises of all power plants connected to the Interconnected Turkish National Grid.

The calculations of which procedures are given below; estimation of OM (Operating Margin) and BM (Built Margin) are made for the entire Turkish Grid.

Electricity transfers from connected electricity systems to the project electricity system are defined as electricity imports and electricity transfers to connected electricity systems are defined as electricity exports.

Tool states that; for the purpose of determining the build margin emission factor, the spatial extend is limited to the project electricity system, except where recent or likely future additions to transmission capacity enable significant increases in imported electricity.

<sup>&</sup>lt;sup>78</sup> Türkiye Elektrik Enerjisi 10 Yıllık Üretim Kapasite Projeksiyonu (2010-2019),/ 10-Year Forecast for Electricity Generation Capacity in Turkey (2010-2019), TEIAS, page 4 (<u>http://www.teias.gov.tr/projeksiyon/KAPASITE%20PROJEKSIYONU%202010.pdf</u>)

For the purpose of determining the operating margin emission factor, 0 t  $CO_{2-eq}/MWh$  is used as the  $CO_2$  emission factor for net electricity imports (EF grid,import,y) from a connected electricity system since data used for calculating other options are not available.

Electricity exports should not be subtracted from the electricity generation data used for calculating and monitoring the electricity.

# Step 2.Choose whether to include off-grid power plants in the project electricity system (optional);

Tool suggests that choose one of the following two options to calculate the operating margin and build margin emission factors.

Option I: Only grid power plants are included in the calculation.

Option II: Both grid power plants and off-grid power plants are included in the calculation.

For the proposed project, Option I is selected and only grid power plants are included in the calculation since the TEİAŞ –grid operator- data only covers grid connected power plants.

### Step 3.Select a method to determine the operating margin (OM);

According to the applied Tool, the calculation of the operating margin emission factor (EFgrid,OM,y) is based on the following methods;

- (a) Simple OM, or
- (b) Simple adjusted OM, or
- (c) Dispatch Data Analysis OM, or
- (d) Average OM.

In case of the proposed project, options (b) and (c) are not preferred due to the scarcity of data for Turkey. Option (d) is not preferred since low-cost/must run resources do not constitute more than 50% of total grid generation. Hence, Simple OM method is applied.

As described in the tool, the Simple OM (a) can only be used if low-cost/must run resources constitute less than 50% of total grid generation in: 1) average of the five most recent years, or 2) based on long-term averages for hydroelectricity production.

The following table shows the share of low-cost/must-run resourced electricity generation for the last 5 years of which data are available.

| Table 25: Total Electricity Generation and From Low-Cost/Must Run Resources (2000-2010) | Table | e 23: Tot | tal Electricity | Generation | and From I | Low-Cost/Must | <b>Run Resour</b> | ces (2006-2010). |
|-----------------------------------------------------------------------------------------|-------|-----------|-----------------|------------|------------|---------------|-------------------|------------------|
|-----------------------------------------------------------------------------------------|-------|-----------|-----------------|------------|------------|---------------|-------------------|------------------|

| Year | Thermal<br>electricity<br>generation | Low-cost/must-<br>run electricity<br>generation | Total gross<br>electricity<br>generation | Share of low-<br>cost/must-run<br>production to total |
|------|--------------------------------------|-------------------------------------------------|------------------------------------------|-------------------------------------------------------|
| 2006 | 131,681.1                            | 44,618.70                                       | 176,299.80                               | 25.31%                                                |
| 2007 | 154,982.5                            | 36,575.63                                       | 191,558.13                               | 19.09%                                                |
| 2008 | 163,919.4                            | 34,498.60                                       | 198,418.00                               | 17.39%                                                |

<sup>&</sup>lt;sup>79</sup> Retrieved from <u>Annual Development of Turkey's Gross Electricity Generation by Primary Energy Resources and The Electricity Utilities (2006-2010)</u>

| 2009           | 156,583.3 | 38,229.60 | 194,812.93 | 19.62% |
|----------------|-----------|-----------|------------|--------|
| 2010           | 155,370.1 | 55,837.60 | 211,207.70 | 26.44% |
| 5-year average |           |           | 21.57%     |        |

The low-cost/must run resources constitute less than 50% of total grid generation in average of the five most recent years, 21.57%. Therefore, the requirements for the use of the Simple OM calculations (option a) are satisfied.

The applied Tool suggests two data vintages; *Ex ante option* and *Ex post option* for calculation of OM emission factor. Due to the nature and availability of the data, for the calculation of Simple OM, the *Ex ante option is selected*. At the time of PD preparations in September, 2012, the data vintage used is most recent as 2008, 2009 and 2010. All the data used in calculation of Simple OM are provided from the "Electricity Generation & Transmission Statistics of Turkey<sup>80</sup>" published annually on the TEİAŞ website.

#### Step 4.Calculate the operating margin emission factor according to the selected method;

The simple OM may be calculated by using;

**Option A:** Based on the net electricity generation and a CO<sub>2</sub> emission factor of each power unit;

**Option B:** Based on the total net electricity generation of all power plants serving the system and the fuel types and total fuel consumption of the project electricity system.

Option B can only be used if; (a) no necessary data for option A, (b) only nuclear and renewable power generation are considered as low-cost/must-run power sources and the quantity of electricity supplied to the grid by these sources is known, (c) off-grid power plants are not included in the calculation.

For the project in question, Option B is preferred since,

- Electricity generation and CO<sub>2</sub> emission factor of individual power plants/units are not available.
- Only renewable power generation are considered as low cost/must run resources.
- Off-grid power plants are not included in calculations and
- Annual fuel consumption by fuel type, annual heating values for feuls consumed for electricity generation, annual electricity generation by fuel type, import and export data are available on the TEİAŞ web site.

At the time of PD preparations in September, 2012, the data vintage used is most recent as 2008, 2009 and 2010. All the data used in calculation of Simple OM are provided from the "Electricity Generation & Transmission Statistics of Turkey<sup>81</sup>" published annually on the TEİAŞ website.

Under Option B, the simple OM emission factor is calculated based on the net electricity supplied to the grid by all power plants serving the system, not including low-cost / must run power plants / units, and based on fuel type(s), and total fuel consumption of the project electricity system, and OM simple is determined as follows;

<sup>&</sup>lt;sup>80</sup> http://www.teias.gov.tr/istatistikler.aspx

<sup>&</sup>lt;sup>81</sup> http://www.teias.gov.tr/istatistikler.aspx

$$EF_{grid,OMsimple,y} = \frac{\sum_{i} (FC_{i,y} \times NCV_{i,y} \times EF_{co2,i,y})}{EG_{y}}$$

Where:

| EFgrid,OMsimple, | y = Simple operating margin CO2 emission factor in year y (t CO2/MWh)                                                                                                  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCi,y            | = Amount of fossil fuel type i consumed in the project electricity system in year y (mass or volume unit)                                                              |
| NCVi,y           | = Net calorific value (energy content) of fossil fuel type i in year y (GJ / mass or volume unit)                                                                      |
| EFCO2,i,y        | = CO2 emission factor of fossil fuel type i in year y (t CO2/GJ)                                                                                                       |
| EGy              | = Net electricity generated and delivered to the grid by all power sources serving the system, not including low-cost / must-run power plants / units, in year y (MWh) |
| i                | = All fossil fuel types combusted in power sources in the project electricity system in year y                                                                         |
| у                | = the three most recent years as per data vintage chosen in step 3.                                                                                                    |
|                  |                                                                                                                                                                        |

#### Step 5. Calculate the build margin (BM) emission factor;

In terms of vintage data, the "Tool to Calculate the Emission Factor for an Electricity System, ver. 02.2.1", provides two options to be chosen. Option 1 was chosen based on the ex ante vintage data to calculate the build margin emission factor.

Option 1 requests that; "For the first crediting period, the BM emission factor ex-ante based on the most recent information available on units already built for sample group m at the time of CDM-PDD<sup>82</sup> submission to the DOE for validation. For the second crediting period, the BM emission factor should be updated based on the most recent information available on units already built at the time of submission of the request for the renewable of the crediting period to the DOE. For the third crediting period, the BM emission factor calculated for the second crediting period should be used. This option does not require monitoring the emission factor during the crediting period."

The sample group of power unit m used to calculate the build margin should be determined as per the following procedure in the tool consistent with the data vintage selected above.

a) The 5 most recent power units, excluding CDM projects activities (SET5-units) shall be identified and annual electricity generation of (AEG set-5units, in MWh) shall be determined.

b) The annual electricity generation of the project electricity system, excluding power units registered as CDM project activities (AEG total, in MWh) shall be determined. The set of power units, excluding power units registered to CDM project starting with power units that started to supply electricity to the grid most recently and that comprise 20% of AEG total (SET $\geq$ 20%) and their annual electricity generation (AEGSET $\geq$ 20% in MWh)

c) From SET 5-units and SET ≥20%, select the set of power units that comprises the larger annual electricity generation (SET sample);

Identify the date when the power units in SET sample started to supply electricity to the grid.

(2)

<sup>&</sup>lt;sup>82</sup> VER-PDD for the proposed project

If none of the power units in SET sample started to supply electricity to the grid more than 10 years ago, then use SET sample to calculate the build margin.

The procedure was applied as; SET5-units and SET $\geq$ 20% were determined; AEGset-5units, AEGSET $\geq$ 20% and AEG total were calculated accordingly. AEGSET $\geq$ 20% has larger annual electricity generation than AEGset-5units. Hence, SET $\geq$ 20% is SET sample and none of the power units in SETsample started to supply electricity to the grid more than 10 years ago. Thereby, SETsample is used to calculate build margin.

The build margin emissions factor is the generation-weighted average emission factor (tCO2/MWh) of all power units m (SETsample) during the most recent year y for which power generation data is available, calculated as follows:

$$EF_{grid,BM,y} = \frac{\sum_{m} EG_{m,y} \times EF_{EL,m,y}}{\sum_{m} EG_{m,y}}$$
(3)

Where,

| EFgrid,BM,y | = Build margin CO2 emission factor in year y (t CO2/MWh)                                          |
|-------------|---------------------------------------------------------------------------------------------------|
| EGm,y       | = Net quantity of electricity generated and delivered to the grid by power unit m in year y (MWh) |
| EFEL,m,y    | = CO2 emission factor of power unit m in year y (t CO2/MWh)                                       |
| т           | = Power units included in the build margin (power units of the SETsample)                         |
| у           | = Most recent historical year for which power generation data is available.                       |

The CO<sub>2</sub> emission factor of each power unit m (EFEL,m,y) should be determined as per the guidance in Step 4 (a) for the simple OM, using options A1, A2 or A3, using for y the most recent historical year for which power generation data is available, and using for m the power units included in the build margin.

Considering the available data on the capacity additions, the formula given under Option A2 of Simple OM Option A is used to calculate EFEL,m,y.

$$EF_{EL,my} = \frac{EF_{CO_2,m,i,y} \times 3.6}{\eta_{m,y}}$$
(4)

Where:

For this calculation, the generation efficiencies  $(\eta)$  are taken from the Annex 1 of the applied Tool. Average CO2 emission factor of different fuel types used in calculation are referred from 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

The CO2 emissions from the most recent capacity additions are calculated by multiplying the EFEL,m,y values determined for each fuel source by annual generation of that source (Table 28). The emission factor has been taken as zero for all renewable and wastes. The generation efficiency of power plants are designated by assuming as using combined cycle technology for oil and natural gas resourced plants and subcritical for coal types. The build margin emission factor for each year is calculated by dividing the total CO2 emissions of the subject year by the total generation from the capacity addition of the same year. The build margin emission factor of the grid is then calculated as a generation weighted average for the years, 2008-2010. Power units included in the build margin known as SETsample are the all power units added to the capacity between years 2008 and 2010 which is the SET≥20% mentioned above, as well.

### Step 6.Calculate the combined margin (CM) emission factor.

Finally, the combined margin emission factor (EFgrid,CM,y) is expressed as the weighted average of the operating margin emission factor (EF grid, OM, y) and build margin emission factor (EF grid, BM, y). The equation is as follows;

$$EF_{grid,CM,y} = EF_{grid,OM,y} \times W_{OM} + EF_{grid,BM,y} \times W_{BM}$$
(5)

Where:

| EFgrid,CM,y | = Combined margin CO2 emission factor in year y (tCO2/MWh)  |
|-------------|-------------------------------------------------------------|
| EFgrid,OM,y | = Operating margin CO2 emission factor in year y (tCO2/MWh) |
| EFgrid,BM,y | = Build margin CO2 emission factor in year y (tCO2/MWh)     |
| wOM         | = Weighting of the operating margin emission factor (%)     |
| wBM         | = Weighting of the build margin emission factor (%)         |

Except wind and solar power generation project activities, wOM and wBM are by default 0.5 and 0.5 respectively for the first crediting period as specified by the Tool. Since the proposed project is hydropower project activity, EFgrid,CM for year y can easily be calculated by using above equation.

In line with above mentioned and applied procedure for Tool, the only parameter that is not monitored annually is the Combined Margin emission factor (EFgrid,CM,y) and will not be recalculated over the crediting period.

The equation of the baseline emission is taken from the approved methodology, AMS.I.D stated above as equation (1) and represented again below;

$$BE_{y} = EG_{BL,y} * EF_{CO_{2},grid,y}$$
(1)

According to the methodology, the baseline emissions include only  $CO_2$  emissions from electricity generation in fossil fuel fired power plants that are displaced due to the project activity.

(5)

For calculating EG  $_{BL,y}$ ; based on the fact that the proposed project is a Greenfield energy power, the following equation is used where, EG  $_{facility, y}$  is the quantity of net electricity generation supplied by the project plant/unit to the grid in year y (MWh/yr).

$$EG_{PJ,y} = EG_{facility,y}$$

(6)

UNFCCO

### **Project Emission:**

As applied methodology, AMS.I.D;

- *1.* For most renewable energy project activities,  $PE_y = 0$ . However, for the following categories of project activities, project emissions have to be considered following the procedure described in the most recent version of ACM0002.<sup>83</sup>
  - Emissions from water reservoirs of hydro power plants.

The referred methodology ACM0002 states;

"for hydro power project activities that result in new reservoirs and hydro power project activities that result in the increase of existing reservoirs, project proponents shall account for  $CH_4$  and  $CO_2$  emissions for the reservoir." and "the project emissions from water reservoirs of hydro power plants ( $PE_{HP,y}$ ) estimated as follows";

If the power density (PD) of the hydro power plant is above  $10 \text{ W} / \text{m}^2$ , PE y is 0.

The power density of the Project activity is calculated as equation below:

$$PD = \frac{Cap_{PJ} - Cap_{BL}}{A_{PJ} - A_{BL}}$$
(7)

Where:

- PD = Power density of the project activity, in  $W/m^2$
- $Cap_{PJ}$  = Installed capacity of the hydro power plant after the implementation of the project activity (W)
- $Cap_{BL}$  = Installed capacity of the hydro power plant before the implementation of the project activity (W). For new hydro power plants, this value is zero.
- A  $_{PJ}$  = Area of the reservoir measured in the surface of the water, after the implementation of the project activity, when the reservoir is full. (m<sup>2</sup>)
- $A_{BL}$  = Area of the reservoir measured in the surface of the water, before the implementation of the project activity, when the reservoir is full (m<sub>2</sub>). For new reservoirs, this value is zero.

The PD has been calculated as 678.5 W/m<sup>2</sup> in section B.6.3. Hence,  $PE_{HP,v} = 0$ .

2. CO<sub>2</sub> emissions from on-site consumption of fossil fuels due to the project activity shall be calculated using the latest version of the "Tool to calculate project or leakage CO<sub>2</sub> emissions from fossil fuel combustion".

No on-site consumption of fossil fuels due to project activity will be observed.

<sup>&</sup>lt;sup>83</sup> ACM0002 "Consolidated baseline methodology for grid-connected electricity generation from renewable sources"

### Leakage Emission;

According to the applied methodology, AMS.I.D; if the energy generating equipment is transferred from another activity, leakage is to be considered.

The transfer of energy generating equipment is not the subject of project activity. Thus, leakage is not considered.

### Emission Reduction;

The ex ante emission reductions (ERy) are calculated as follows;

$$ER_y = BE_y - PE_y - LE_y$$

Where:

 $ER_y$  = Emission reductions in year y (t CO<sub>2</sub>e/y)

BE  $_{y}$  = Baseline Emissions in year y (t CO<sub>2</sub>e/y)

PE <sub>y</sub> = Project emissions in year y (t  $CO_2e/y$ )

 $LE_y$  = Leakage emissions in year y (t CO<sub>2</sub>e/y)

### **B.6.2.** Data and parameters that are available at validation:

| Data / Parameter:    | EGy                                                                                  |
|----------------------|--------------------------------------------------------------------------------------|
| Data unit:           | GWh                                                                                  |
| Description:         | Net electricity generated and delivered to the grid by all power sources serving the |
|                      | system, excluding low-cost/must-run units/plants, in year y                          |
| Source of data used: | TEIAS (Turkish Electrical Transmission Company)                                      |
|                      | Annual Development of Turkey's Gross Electricity Generation of Primary Energy        |
|                      | <u>Resources (1975-2010)</u>                                                         |
| Value applied:       | Table 23, Table 27                                                                   |
| Justification of the | TEIAS (Turkish Electricity Transmission Company) is the official source for the      |
| choice of data or    | related data, hence providing the most recent and accurate information available.    |
| description of       |                                                                                      |
| measurement methods  |                                                                                      |
| and procedures       |                                                                                      |
| actually applied :   |                                                                                      |
| Any comment:         |                                                                                      |

| Data / Parameter:    | Electricity Imports                                                                 |
|----------------------|-------------------------------------------------------------------------------------|
| Data unit:           | GWh                                                                                 |
| Description:         | Electricity transfers from connected electricity systems to the project electricity |
|                      | system by years (2008-2010)                                                         |
| Source of data used: | TEIAS (Turkish Electrical Transmission Company)                                     |
|                      | Annual Development of Electricity Generation- Consumption and Losses in Turkey      |
|                      | <u>(1984-2010)</u>                                                                  |
| Value applied:       | Table 23, Table 26                                                                  |
| Justification of the | TEIAS (Turkish Electricity Transmission Company) is the official source for the     |
| choice of data or    | related data, hence providing the most recent and accurate information available.   |
| description of       |                                                                                     |
| measurement methods  |                                                                                     |

(8)

# PROJECT DESIGN DOCUMENT FORM (CDM-SSC-PDD) - Version 03

| and procedures     |  |
|--------------------|--|
| actually applied : |  |
| Any comment:       |  |

| Data / Parameter:    | FC <sub>i,y</sub>                                                                                       |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Data unit:           | $m^3$ / tons ( $m^3$ for gaseous fuels)                                                                 |  |  |  |
| Description:         | Amount of fossil fuel consumed in the project electricity system by generation sources in year <i>y</i> |  |  |  |
| Source of data used: | TEIAS (Turkish Electricity Transmission Company)                                                        |  |  |  |
|                      | <u>Fuels Consumed In Thermal P.Ps In Turkey By The Electricity Utilities (2000-2005)</u>                |  |  |  |
| Value applied:       | Table 24                                                                                                |  |  |  |
| Justification of the | TEIAS (Turkish Electricity Transmission Company) is the official source for the                         |  |  |  |
| choice of data or    | related data, hence providing the most recent and accurate information available.                       |  |  |  |
| description of       |                                                                                                         |  |  |  |
| measurement methods  |                                                                                                         |  |  |  |
| and procedures       |                                                                                                         |  |  |  |
| actually applied :   |                                                                                                         |  |  |  |
| Any comment:         |                                                                                                         |  |  |  |

| Data / Parameter:    | Heat Value                                                                                                   |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| Data unit:           | TJ                                                                                                           |  |  |  |
| Description:         | Amount of heat produced by the consumption of a unit quantity of fuel types consumed in thermal power plants |  |  |  |
| Source of data used: | TEIAS (Turkish Electricity Transmission Company)                                                             |  |  |  |
|                      | Heating Values Of Fuels Consumed In Thermal P.Ps In Turkey By The Electricity                                |  |  |  |
|                      | <u>Utilities ((2006-2010)</u>                                                                                |  |  |  |
| Value applied:       | Table 25Hata! Başvuru kaynağı bulunamadı.                                                                    |  |  |  |
| Justification of the | TEIAS (Turkish Electricity Transmission Company) is the official source for the                              |  |  |  |
| choice of data or    | related data, hence providing the recent and accurate information available.                                 |  |  |  |
| description of       | Heat value is divided by FC to determine NCV.                                                                |  |  |  |
| measurement methods  | (The formula is retrieved from 2006 IPCC Guidelines for National Greenhouse Gas                              |  |  |  |
| and procedures       | Inventories, Chapter 1 of Volume 2, Box 1.1)                                                                 |  |  |  |
| actually applied :   |                                                                                                              |  |  |  |
| Any comment:         | 1J = 0.238846 cal                                                                                            |  |  |  |

| Data / Parameter:                                                                                                          | NCV <sub>i,y</sub>                                                                                                                                                                                                                                                                                                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Data unit:                                                                                                                 | TJ / tons (m <sup>3</sup> for gaseous fuels)                                                                                                                                                                                                                                                                                                                             |  |  |
| Description:                                                                                                               | Net calorific value (energy content) of fossil fuel type <i>i</i> in year <i>y</i>                                                                                                                                                                                                                                                                                       |  |  |
| Source of data used:                                                                                                       | Calculated by using heat value and FC                                                                                                                                                                                                                                                                                                                                    |  |  |
| Value applied:                                                                                                             | Table 24                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Justification of the<br>choice of data or<br>description of<br>measurement methods<br>and procedures<br>actually applied : | <ul><li>TEIAS (Turkish Electricity Transmission Company) is the official source for the related data, hence providing the recent and accurate information available.</li><li>Heat value is divided by FC to determine NCV.</li><li>(The formula is retrieved from 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 1 of Volume 2,Box 1.1)</li></ul> |  |  |

# PROJECT DESIGN DOCUMENT FORM (CDM-SSC-PDD) - Version 03

| Any comment:                                                                                                               |                                                                                                                                                                                                                                                                                                                         |  |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                         |  |
| Data / Parameter:                                                                                                          | $\mathbf{EF}_{C02 i,y}$ and $\mathbf{EF}_{C02 m,i,y}$                                                                                                                                                                                                                                                                   |  |
| Data unit:                                                                                                                 | T CO <sub>2</sub> /GJ                                                                                                                                                                                                                                                                                                   |  |
| Description:                                                                                                               | $CO_2$ emission factor of fossil fuel type <i>i</i> , used in power unit m, in year y                                                                                                                                                                                                                                   |  |
| Source of data used:                                                                                                       | IPCC default values at the lower limit of the uncertainty at a 95% confidence<br>interval as provided in Table 1.4 and Annex 1 for sub-bituminous of Chapter 1 of<br>Volume 2 (Energy) of the 2006 IPCC Guidelines for National Greenhouse Gas<br>Inventory<br>http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm |  |
| Value applied:                                                                                                             | Calculated by Table 26 and used in Table 27                                                                                                                                                                                                                                                                             |  |
| Justification of the<br>choice of data or<br>description of<br>measurement methods<br>and procedures<br>actually applied : | There is no information on the fuel specific default emission factor in Turkey, hence, IPCC values has been used as referred in the "Tool to calculate the emission factor for an electricity system, version 02.2.1".                                                                                                  |  |
| Any comment:                                                                                                               |                                                                                                                                                                                                                                                                                                                         |  |

| Data / Parameter:                                                                                                          | EFgrid,OMsimple,y                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Data unit:                                                                                                                 | tCO <sub>2</sub> /MWh                                                                                             |
| Description:                                                                                                               | Simple operating margin CO <sub>2</sub> emission factor in year y                                                 |
| Source of data used:                                                                                                       | Calculated by formula (2)                                                                                         |
| Value applied:                                                                                                             | 0.657086                                                                                                          |
| Justification of the<br>choice of data or<br>description of<br>measurement methods<br>and procedures<br>actually applied : | The data used in the formula is taken from the official source; TEIAS (Turkish Electricity Transmission Company). |
| Any comment:                                                                                                               |                                                                                                                   |

| Data / Parameter:                                                                                                          | EF <sub>EL, m, y</sub>                                                                                                                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Data unit:                                                                                                                 | tCO <sub>2</sub> .eq/MWh                                                                                                                 |  |  |  |
| Description:                                                                                                               | $CO_2$ emission factor of power unit <i>m</i> in year <i>y</i>                                                                           |  |  |  |
| Source of data used:                                                                                                       | Calculated by equation 4 by Table 28                                                                                                     |  |  |  |
| Value applied:                                                                                                             | Used in equation 3, Table 29                                                                                                             |  |  |  |
| Justification of the<br>choice of data or<br>description of<br>measurement methods<br>and procedures<br>actually applied : | Calculated <i>ex-ante</i> according to the "Tool to calculate emission factor for an electricity system" version 02.2.1, EB 63 Annex 19. |  |  |  |
| Any comment:                                                                                                               |                                                                                                                                          |  |  |  |

| Data / Parameter:                                                                                                          | η m, y                                                                                                                                                                                                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Data unit:                                                                                                                 | -                                                                                                                                                                                                          |  |  |
| Description:                                                                                                               | Average net energy conversion efficiency of power unit m in year y                                                                                                                                         |  |  |
| Source of data used:                                                                                                       | Tool to calculate the emission factor for an electricity system, version 02.2.1,<br>Annex 1 (after 2000)                                                                                                   |  |  |
| Value applied:                                                                                                             | Used in equation 4, Table 28                                                                                                                                                                               |  |  |
| Justification of the<br>choice of data or<br>description of<br>measurement methods<br>and procedures<br>actually applied : | Since there are no current efficiency values of power units in Turkey, the efficiency values are retrieved from Tool to calculate the emission factor for an electricity system, version. 02.2.1, Annex 1. |  |  |
| Any comment:                                                                                                               |                                                                                                                                                                                                            |  |  |

| Data / Parameter:    | EGm,y                                                                                       |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------|--|--|--|
| Data unit:           | GWh                                                                                         |  |  |  |
| Description:         | Net quantity of electricity generated and delivered to the grid by power unit <i>m</i> , in |  |  |  |
|                      | year y                                                                                      |  |  |  |
| Source of data used: | TEIAS (Turkish Electrical Transmission Company)                                             |  |  |  |
|                      | 10-Year Forecast for Electricity Generation Capacity in Turkey (2011-2020)"                 |  |  |  |
|                      | http://212.175.131.171/projeksiyon/KAPASITE%20PROJEKSIYONU%202010.pdf                       |  |  |  |
|                      | 10-Year Forecast for Electricity Generation Capacity in Turkey (2010-2019)"                 |  |  |  |
|                      | http://www.teias.gov.tr/projeksiyon/KAPASITE%20PROJEKSIYONU%202010.pdf                      |  |  |  |
|                      | 10-Year Forecast for Electricity Generation Capacity in Turkey (2009-2018)                  |  |  |  |
|                      | http://www.teias.gov.tr/projeksiyon/KAPASITEPROJEKSIYONU2009.pdf                            |  |  |  |
| Value applied:       | Table 29                                                                                    |  |  |  |
| Justification of the |                                                                                             |  |  |  |
| choice of data or    | TEIAS (Turkish Electricity Transmission Company) is the official source for the             |  |  |  |
| description of       | related data, hence providing the recent and accurate information available.                |  |  |  |
| measurement methods  | Is The electricity generation from all different sources included in capacity addition      |  |  |  |
| and procedures       | used in the equation 3.                                                                     |  |  |  |
| actually applied :   |                                                                                             |  |  |  |
| Any comment:         | EGm,y expresses capacity additions to the grid by power unit m in subject year.             |  |  |  |
|                      | The summation of all years and units added to capacity in this year comprises 20%           |  |  |  |
|                      | of the total generation (2008-2010). The summation of capacity additions between            |  |  |  |
|                      | 2008 and 2010 are not sufficient to meet the %20 of total generation in 2010.               |  |  |  |

| Data / Parameter:                                                                                    | EF grid, BM, y                                                                                                                                                                                   |  |  |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Data unit:                                                                                           | tCO2/MWh                                                                                                                                                                                         |  |  |
| Description:                                                                                         | Build margin CO <sub>2</sub> emission factor in year y                                                                                                                                           |  |  |
| Source of data used:                                                                                 | Calculated by equation 3 in Table 29                                                                                                                                                             |  |  |
| Value applied:                                                                                       | 0.444260 and used in equation 5                                                                                                                                                                  |  |  |
| Justification of the<br>choice of data or<br>description of<br>measurement methods<br>and procedures | Calculated <i>ex-ante</i> and comprised capacity addition of power plants between years 2008-2010 according to the "Tool to calculate emission factor for an electricity system, version 02.2.1" |  |  |

### PROJECT DESIGN DOCUMENT FORM (CDM-SSC-PDD) - Version 03

### CDM – Executive Board

| actually applied : |  |
|--------------------|--|
| Any comment:       |  |
|                    |  |

| Data / Parameter:                                                                                                          | EF grid, CM, y                                                                                                                            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Data unit:                                                                                                                 | tCO <sub>2</sub> e/MWh                                                                                                                    |  |  |  |
| Description:                                                                                                               | Combined margin $CO_2$ emission factor in year y                                                                                          |  |  |  |
| Source of data used:                                                                                                       | Calculated by equation 5                                                                                                                  |  |  |  |
| Value applied:                                                                                                             | 0.550673                                                                                                                                  |  |  |  |
| Justification of the<br>choice of data or<br>description of<br>measurement methods<br>and procedures<br>actually applied : | Calculated <i>ex-ante</i> according to the "Tool to calculate emission factor for an electricity system, version 02.2.1", EB 63 Annex 19. |  |  |  |
| Any comment:                                                                                                               |                                                                                                                                           |  |  |  |

### **B.6.3** Ex-ante calculation of emission reductions:

### Simple Operating Margin (OM)

As mentioned above, the most recent data vintage belongs to the years 2008, 2009 and 2010. All the data used in calculation of the simple OM are referred to the "Electricity Generation & Transmission Statistics of Turkey<sup>84</sup>," published annually on the TEIAŞ website. The *emission reduction spread sheet* submitted to DOE and recommended to be followed since the mentioned references/sources were given as sheets and calculations would easily be followed in line with the tool.

Taking into account the available data, option B for simple OM method is appropriate for the project activity. TEİAŞ publishes the annual heating values of the fuels consumed in the power plants, the heating values are directly related to fuel consumption and are used to calculate average Net Calorific Values (TJ/kt).

The heating values were published by TEİAŞ with the unit Tcal. Tcal is converted to Gjoule by using the conversion factor 1Joule = 0.239 calories. Then the heating values in GJ are divided by Fuel Consumption (FCi,y) to determine the Net Calorific Values of the fuels consumed in TJ/kt as follows;

| Year | Fuel Type           | FC (tones) | Heat Value (TJ) | NCV<br>(TJ/tones) |
|------|---------------------|------------|-----------------|-------------------|
|      | Sub-Bituminous Coal | 7,419,703  | 165,462.568     | 0.022             |
|      | Lignite             | 56,689,392 | 403,969.424     | 0.007             |
| 2010 | Fuel-Oil            | 891,782    | 35,853.233      | 0.040             |
|      | Diesel-Oil          | 20,354     | 876.473         | 0.043             |
|      | LPG                 | 0          | 0.000           | 0.000             |
|      | Naphtha             | 13,140     | 439.860         | 0.033             |

| Table 24: Heat V | Values, FC and I | NCV values of | each fuel source | e in 2010, 2009    | and 2008 |
|------------------|------------------|---------------|------------------|--------------------|----------|
|                  | ·                |               | enem raer source | , = 0 = 0, = 0 0 / |          |

<sup>&</sup>lt;sup>84</sup> <u>http://www.teias.gov.tr/istatistikler.aspx</u>

|      | Natural Gas         | 21,783,414 | 813,734.798 | 0.037 |
|------|---------------------|------------|-------------|-------|
|      | Sub-Bituminous Coal | 6,621,177  | 146,982.896 | 0.022 |
|      | Lignite             | 63,620,518 | 408,574.172 | 0.006 |
|      | Fuel-Oil            | 1,594,321  | 63,429.040  | 0.040 |
| 2009 | Diesel-Oil          | 180,857    | 7,657.667   | 0.042 |
|      | LPG                 | 111        | 5.155       | 0.046 |
|      | Naphtha             | 8,077      | 352.289     | 0.044 |
|      | Natural Gas         | 20,978,040 | 779,336.254 | 0.037 |
|      | Sub-Bituminous Coal | 6,270,008  | 139,369.061 | 0.022 |
|      | Lignite             | 66,374,120 | 452,821.836 | 0.007 |
|      | Fuel-Oil            | 2,173,371  | 86,219.701  | 0.040 |
| 2008 | Diesel-Oil          | 131,206    | 5,556.353   | 0.042 |
|      | LPG                 | 0          | 0.000       | 0.000 |
|      | Naphtha             | 10,606     | 472.792     | 0.045 |
|      | Natural Gas         | 21,607,635 | 791,014.608 | 0.037 |

The  $CO_2$  emission factors of fossil fuel types were retrieved from IPCC guidelines as suggested by Tool and tabulated below.

Table 25: CO<sub>2</sub> emission factors of fossil fuel types<sup>85</sup>

| Fuel Type           | EF CO <sub>2</sub> (kg/TJ)<br>-lower- |
|---------------------|---------------------------------------|
| Sub-Bituminous Coal | 92,800                                |
| Lignite             | 90,900                                |
| Fuel-Oil            | 75,500                                |
| Diesel-Oil          | 72,600                                |
| LPG                 | 61,600                                |
| Naphtha             | 69,300                                |
| Natural Gas         | 54,300                                |

Net electricity generated and delivered to the grid by all power sources serving the system, not including low-cost/must-run power plants, including imports in year y, (EGy) have been determined by the following way;

Table 26: Calculation of EGy for 2008, 2009 and 2010

|      | Net        | Internal consumption | Generation<br>of low<br>cost/must | Internal<br>consumption<br>of low cost/ | Net<br>generation of<br>low cost/must | Net total<br>generation-net<br>generation low |          | EGy        |
|------|------------|----------------------|-----------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------------|----------|------------|
|      | generation | (%)                  | run                               | must run                                | run                                   | cost must run                                 | Imports  | (GWh)      |
| 2008 | 189,761.90 | 4.36                 | 34,498.60                         | 1,505.02                                | 32,993.58                             | 156,768.32                                    | 789.40   | 157,557.72 |
| 2009 | 186,619.30 | 4.21                 | 38,229.60                         | 1,607.89                                | 36,621.71                             | 149,997.59                                    | 812.00   | 150,809.59 |
| 2010 | 203,046.10 | 3.86                 | 55,837.60                         | 2,157.71                                | 53,679.89                             | 149,366.21                                    | 1,143.80 | 150,510.01 |

<sup>&</sup>lt;sup>85</sup> CO2 emission factors for combustion: IPCC guidelines vol.2 chp. 1, Annex 1 for sub-bituminous and Table 1.4 for others

The net electricity generation by all primary energy resources, internal consumption rate, imports and gross electricity generation by low-cost/must run resources are published by TEİAŞ. In order to determine the net electricity generation by low-cost/must-run resources, the internal consumption of low-cost/must-run power plants have been subtracted from the gross electricity generation of those and the internal consumption can be calculated by the internal consumption percentage have been multiplied with gross electricity generation of low-cost/must run resources. Then, the net electricity generation of low-cost/must-run resources have been subtracted from net electricity generation by all primary resources in line with applied Tool. Finally by the addition of imports, the EGy was determined.

The OM emission factors for each fuel type for each year; 2008, 2009 and 2010 were calculated. The OM emission factors in the same year for different fuel types are summed up and given below. The electricity generation weighted average of those gave;

|                                                                 | 2008       | 2009                      | 2010       |
|-----------------------------------------------------------------|------------|---------------------------|------------|
|                                                                 | EF grid,ON | <b>Asimple,y,i</b> ( t CO | 02 / MWh ) |
| Sub-Bituminous Coal                                             | 0.08209    | 0.09045                   | 0.10202    |
| Lignite                                                         | 0.26125    | 0.24627                   | 0.24398    |
| Fuel Oil                                                        | 0.04132    | 0.03175                   | 0.01798    |
| Diesel Oil                                                      | 0.00256    | 0.00369                   | 0.00042    |
| LPG                                                             | 0.00000    | 0.00000                   | 0.00000    |
| Naphtha                                                         | 0.00021    | 0.00016                   | 0.00020    |
| Natural Gas                                                     | 0.27261    | 0.28061                   | 0.29357    |
| Total                                                           | 0.66003    | 0.65292                   | 0.65818    |
| 3-year electricity<br>generation weighted<br>average (tCO2/MWh) |            | 0.657086                  |            |

 Table 27: Generated Electricity Weighted Average EFgrid,OMsimple,y (t CO2 / MWh)

### EFgrid,OM = 0.657086 t CO2/ MWh

### **Build Margin (BM)**

According to the tool, in terms of the ex ante data vintage, option 1 was conducted. For the first crediting period, the EFgrid,BM was calculated ex ante based on the most recent data available on the plants designated as sample set at the time of PDD preparation and ER calculation. For the second crediting period, the build margin emission factor will be updated based on the most recent data available on plants added to capacity at the time of submission of the request for renewal of the crediting period to DOE.

The sample group of power units *m* used to calculate the build margin was determined as the capacity addition of years 2010, 2009 and 2008 to grid. This set is named as SETsample and equal to SET $\geq$ 20% in accordance with the procedures detailed in section 3.1. For all computation in this part, the CDM registered activities were excluded from the capacity addition.

52

Electricity generation of the power plant in SET $\geq$ 20% shall comprise 20% of AEGtotal of the referred year. The referred year was selected as 2010 of which data have been recently available when the PD was prepared (September, 2012).

The required capacity addition data can only be found in the report named as "10-Year Forecast for Electricity Generation Capacity in Turkey" and published by TEİAŞ. The power plants added to capacity of Turkey are published on an annual basis. The date of starting operation, installed capacity and electricity generation of power plants added to capacity in year 2010 was published at the report; "10-Year Forecast for Electricity Generation Capacity in Turkey (2011-2020)"<sup>86</sup>. The same data for year 2009 was at the report; "10-Year Forecast for Electricity Generation Capacity in Turkey (2010-2019)", and so on. The details of references for capacity addition data can be found in the "emission reduction spread sheet" submitted to DOE.

Hence;

AEGtotal,2010 = 207,587 GWh

20% of AEGtotal,2010 = 41,517.40 GWh

AEGSET≥20% = 41,813.09 GWh (comprise 20% of AEGtotal,2010)

AEGSET $\geq$ 20% expresses the summation of EGm,y: electricity generated and delivered to grid by power unit m in year where m: all power plant in SET $\geq$ 20% and y for each year; 2008, 2009 and 2010.

The calculation of EFEL, m, y is shown in the table below;

| Fuel Type           | EF CO2<br>(kgCO2/Tj) | EF CO2<br>(tCO2/Gj) | Generation<br>Efficiency*<br>(%) | EF,EL,my<br>(tCO2/MWh) |
|---------------------|----------------------|---------------------|----------------------------------|------------------------|
| Sub-Bituminous Coal | 92,800               | 0.0928              | 0.39                             | 0.8566                 |
| Lignite             | 90,900               | 0.0909              | 0.39                             | 0.8391                 |
| Fuel Oil            | 75,500               | 0.0755              | 0.46                             | 0.5909                 |
| Diesel Oil          | 72,600               | 0.0726              | 0.46                             | 0.5682                 |
| LPG                 | 61,600               | 0.0616              | 0.46                             | 0.4821                 |
| Naphtha             | 69,300               | 0.0693              | 0.46                             | 0.5423                 |
| Natural Gas         | 54,300               | 0.0543              | 0.60                             | 0.3258                 |

 Table 28: Calculation of EFEL using default generation efficiencies

In the following table, the capacity addition of a fuel source for all subject years was summed up to determine the total capacity addition of that fuel source. The  $CO_2$  emissions from the most recent capacity addition are calculated by multiplying the EFELm,y values calculated for each fuel source at the table above by annual electricity generation (capacity addition) of that fuel source.

<sup>&</sup>lt;sup>86</sup> http://212.175.131.171/projeksiyon/KAPASITE%20PROJEKSIYONU%202010.pdf

 $EFCO_2$  of renewable resources (wind, geothermal, hydro, renewable+waste) are taken as zero as detailed in section B.6.1. Thus, in the table below, the amounts of emissions by renewable resources were zero.

| Year                   | 2008       | 2009        | 2010      | Capacity<br>addition | Emission by<br>fuel source |
|------------------------|------------|-------------|-----------|----------------------|----------------------------|
| Fuel Type              | Electricit | y generatio | n (GWh)   | Total                | Total                      |
| Sub-Bituminous Coal    | 0.00       | 1,923.33    | 9,080.00  | 11,003.33            | 9,425.62                   |
| Lignite                | 0.00       | 948.00      | 0.00      | 948.00               | 795.44                     |
| Fuel-oil               | 16.40      | 777.79      | 0.00      | 794.19               | 469.26                     |
| Diesel Oil             | 0.00       | 0.00        | 0.00      | 0.00                 | 0.00                       |
| LPG                    | 0.00       | 0.00        | 0.00      | 0.00                 | 0.00                       |
| Naphtha                | 0.00       | 0.00        | 0.00      | 0.00                 | 0.00                       |
| Natural Gas            | 1,960.60   | 10,089.16   | 12,153.90 | 24,203.66            | 7,885.55                   |
| Wind                   | 25.71      | 337.33      | 308.06    | 671.10               | 0.00                       |
| Geothermal             | 14.10      | 0.00        | 0.00      | 14.10                | 0.00                       |
| Hydro                  | 255.43     | 1,107.00    | 2,538.24  | 3,900.67             | 0.00                       |
| Renewable+Waste        | 0.00       | 144.95      | 133.08    | 278.04               | 0.00                       |
| Total                  | 2,272.24   | 15,327.56   | 24,213.29 |                      | 18,575.88                  |
| AEG <sub>SET≥20%</sub> |            | 41,813.09   |           |                      |                            |

Table 29: Annual CO<sub>2</sub> emissions for capacity additions by fuel sources

The build margin emission factor of the grid is then calculated as a generated weighted average by dividing the total emission of fuel sources by electricity generated by  $SET \ge 20\%$  (AEGSET  $\ge 20\%$ ).

EFgrid,BM = 18,575.88 / 41,813.09 = 0.444260 t CO2/ MWh

### Combined Margin (CM)

Where weights  $w_{OM}$  and  $w_{BM}$  are by default 0.5 as per applied methodology, based on the formula no.4 in section 3.1;

$$\mathbf{EFgrid}, \mathbf{CM}, \mathbf{y} = (0.5 \times 0.657086) + (0.5 \times 0.444260) = \mathbf{0.550673} \mathbf{t} \mathbf{CO}_{2-eq} / \mathbf{MWh}$$

#### **Baseline Emission**

 $BEy = 0.550673 \text{ t CO}_{2-eq} / \text{MWh x 19,899 MWh} = 10,957 \text{ t CO}_{2-eq}$ 

#### **Project Emission**

According to referred methodology ACM0002;

If the power density (PD) of the hydro power plant is above  $10 \text{ W} / \text{m}^2$ , PE y is 0.

Cap  $_{PJ} = 6,518,000 W_e$ 

Cap  $_{BL} = 0$  (Justification: The project is a new hydro power plant)

A Kuzkaya 1 weir ponding area =  $10,000 \text{ m}^2$ 

A Kuzkaya 2 weir ponding area =  $15,000 \text{ m}^2$ 

 $A_{Pi} = 25,000 \text{ m}^2 \text{ (area may cause CH}_4 \text{ emission)}^{87}$ 

A  $_{BL} = 0$  (Justification: The project is a new hydro power plant)

Therefore;

 $PD = (6,518,000 - 0) / (0 - 25,000) = 260.72 W / m^2 > 10 W / m^2$ 

Hence; **PEy** = 0 t CO2-eq

### Leakage Emission

LEy = 0 t CO2-eq in accordance with applied methodology; AMS.I.D.

#### **Emission Reduction**

ERy = 10,957 t CO2-eq - 0 - 0 = 10,957 t CO2-eq

### **B.6.4** Summary of the ex-ante estimation of emission reductions:

| Year                 | Estimation of<br>project<br>activity emissions<br>(tonnes CO <sub>2</sub> -eq) | Estimation of baseline<br>emissions<br>(tonnes CO <sub>2</sub> -eq) | Estimation of<br>leakage (tonnes<br>CO <sub>2</sub> -eq) | Estimation of overall<br>emission reductions<br>(tonnes CO <sub>2</sub> -eq) |
|----------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|
| May-December 2015*   | 0                                                                              | 7,305                                                               | 0                                                        | 7,305                                                                        |
| 2016                 | 0                                                                              | 10,958                                                              | 0                                                        | 10,958                                                                       |
| 2017                 | 0                                                                              | 10,958                                                              | 0                                                        | 10,958                                                                       |
| 2018                 | 0                                                                              | 10,958                                                              | 0                                                        | 10,958                                                                       |
| 2019                 | 0                                                                              | 10,958                                                              | 0                                                        | 10,958                                                                       |
| 2020                 | 0                                                                              | 10,958                                                              | 0                                                        | 10,958                                                                       |
| 2021                 | 0                                                                              | 10,958                                                              | 0                                                        | 10,958                                                                       |
| January-April 2022** | 0                                                                              | 3,653                                                               | 0                                                        | 3,653                                                                        |
| TOTAL for 7 yrs.     | 0                                                                              | 76,705                                                              | 0                                                        | 76,705                                                                       |

\* For 8 months

\*\* For 4 months

55

<sup>&</sup>lt;sup>87</sup> Kuzkaya Weir and HEPP, EIA Report, page 29

# **B.7** Application of a monitoring methodology and description of the monitoring plan:

| Data / Parameter:    | EGy, Kuzkaya Weir and HEPP                                                          |
|----------------------|-------------------------------------------------------------------------------------|
| Data unit:           | MWh                                                                                 |
| Description:         | Net Electricity generated and delivered to the grid by the proposed project in year |
|                      | "y"                                                                                 |
| Source of data to be | Metering devices used in power plants, monthly records signed by TEIAS and          |
| used:                | plants manager and invoices will be used.                                           |
| Value of data        | 19,899 MWh/year                                                                     |
| Description of       | Generation data will be measured by two metering devices continuously. These        |
| measurement methods  | measurements will be recorded monthly to provide the data for the monthly           |
| and procedures to be | invoicing to TEIAS. Each month, an officer from TEIAS and the                       |
| applied:             | manager/electricity technician of the power plant will record the readings and      |
|                      | sign. The continuous measurement of the produced electricity by electricity         |
|                      | metering device –ammeter- is to determine the efficiency of power plant. The        |
|                      | recordings of TEIAŞ are used to determine the amount of net electricity             |
|                      | generated since it is a governmental agency.                                        |
| Frequency:           | Annually                                                                            |
| QA/QC procedures to  | Two calibrated ammeters will act as backup for each other. Maintenance and          |
| be applied:          | calibration of the metering devices will be made by TEIAS periodically. If the      |
|                      | difference between the readings of two devices exceeds 0.2%, maintenance will       |
|                      | be done before waiting for periodical maintenance. The cross-check will be          |
|                      | provided by TEİAŞ-PMUM invoices.                                                    |
| Any comment:         |                                                                                     |

| <b>B.7.1</b> | Data and parameters monitored: |
|--------------|--------------------------------|
|--------------|--------------------------------|

| Data / Parameter:    | Qmin Kuzkaya 1                                                        |                  |                 |  |  |
|----------------------|-----------------------------------------------------------------------|------------------|-----------------|--|--|
| Data unit:           | m <sup>3</sup> /s                                                     |                  |                 |  |  |
| Description:         | The minimum flow released to the downstream of creek after weir       |                  |                 |  |  |
|                      | structure also known as minimum flow which is ecological water demand |                  |                 |  |  |
|                      | of creek.                                                             |                  |                 |  |  |
| Source of data to be | Will be measu                                                         | red via flow met | er.             |  |  |
| used:                |                                                                       |                  |                 |  |  |
| Value of data:       |                                                                       | Months           | Released from   |  |  |
|                      |                                                                       | within           | Kuzkaya 1 weir  |  |  |
|                      |                                                                       | January          | 450 l/sec       |  |  |
|                      |                                                                       | February         | 1250 l/sec      |  |  |
|                      |                                                                       | March            | 1250 l/sec      |  |  |
|                      |                                                                       | April            | 1250 l/sec      |  |  |
|                      |                                                                       | May              | 1266.88 l/sec   |  |  |
|                      |                                                                       | June             | 1283.76 l/sec   |  |  |
|                      |                                                                       | July             | All coming flow |  |  |
|                      |                                                                       | August           | All coming flow |  |  |
|                      |                                                                       | September        | 473.21 l/sec    |  |  |
|                      |                                                                       | October          | 450 l/sec       |  |  |
|                      |                                                                       | November         | 450 l/sec       |  |  |
|                      |                                                                       | December         | 450 l/sec       |  |  |

| Description of       | During the operation of HEPP, the flow is measured continuously by a          |
|----------------------|-------------------------------------------------------------------------------|
| measurement methods  | flow meter which is placed after the regulator and in conjunction with        |
| and procedures to be | DSİ online system.                                                            |
| applied:             | As well, the reports of monthly values of minimum flow will be reported       |
|                      | to The Provincial Directorate of Environment and Forestry.                    |
| Frequency:           | Annually                                                                      |
| QA/QC procedures to  | The minimum flow is controlled by General Hydraulic State Works The           |
| be applied:          | 23 <sup>rd</sup> Regional Directorate and Kastamonu Provincial Directorate of |
|                      | Environment and Urban Planning by means of flow meter.                        |
| Any comment:         |                                                                               |

| Data / Parameter:    | Qmin Kuzkaya 2                                                                                                                                  |                  |                                 |                |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------|----------------|
| Data unit:           | $m^3/s$                                                                                                                                         |                  |                                 |                |
| Description:         | The minimum flow released to the downstream of creek after weir structure also known as minimum flow which is ecological water demand of creek. |                  |                                 |                |
| Source of data to be | Will be measured via flow meter.                                                                                                                |                  |                                 |                |
| used:                |                                                                                                                                                 |                  |                                 |                |
| Value of data:       |                                                                                                                                                 | Months           | Released from<br>Kuzkaya 2 weir |                |
|                      |                                                                                                                                                 | January          | 260 l/sec                       |                |
|                      |                                                                                                                                                 | February         | 260 l/sec                       |                |
|                      |                                                                                                                                                 | March            | 260 l/sec                       |                |
|                      |                                                                                                                                                 | April            | 260 l/sec                       |                |
|                      |                                                                                                                                                 | May              | 265.72 l/sec                    |                |
|                      |                                                                                                                                                 | June             | 267.7 l/sec                     |                |
|                      |                                                                                                                                                 | July             | All coming flow                 |                |
|                      |                                                                                                                                                 | August           | All coming flow                 |                |
|                      |                                                                                                                                                 | September        | 261.76 l/sec                    |                |
|                      |                                                                                                                                                 | October          | 260 l/sec                       |                |
|                      |                                                                                                                                                 | November         | 260 l/sec                       |                |
|                      |                                                                                                                                                 | December         | 260 l/sec                       |                |
| Description of       | During the op                                                                                                                                   | peration of HEPH | P, the flow is measured cont    | tinuously by a |
| measurement methods  | flow meter which is placed after the regulator and in conjunction with                                                                          |                  |                                 |                |
| and procedures to be | DSİ online system.                                                                                                                              |                  |                                 |                |
| applied:             | As well, the reports of monthly values of minimum flow will be reported                                                                         |                  |                                 |                |
|                      | to The Provincial Directorate of Environment and Forestry.                                                                                      |                  |                                 |                |
| Frequency:           | Annually                                                                                                                                        |                  |                                 |                |
| QA/QC procedures to  | The minimum                                                                                                                                     | flow is controll | ed by General Hydraulic Sta     | te Works The   |
| be applied:          | 23 <sup>rd</sup> Regiona                                                                                                                        | l Directorate ar | nd Kastamonu Provincial         | Directorate of |
|                      | Environment and Urban Planning by means of flow meter.                                                                                          |                  |                                 |                |
| Any comment:         |                                                                                                                                                 |                  |                                 |                |

| Data / Parameter: | Air quality                                                       |
|-------------------|-------------------------------------------------------------------|
| Data unit:        | tSO <sub>2</sub> and tNOx                                         |
| Description:      | The avoided SO2 and NOx/KWh by project activity which substitutes |

|                            | electricity generation from thermal power plants.                                                                                                                  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source of data to be used: | The impact of hydro power to air quality will be monitored by calculating avoided NOx and $SO_2$ emissions from electricity mix of Turkey in the year calculation. |
| Description of             | The official data will be chosen.                                                                                                                                  |
| measurement methods        |                                                                                                                                                                    |
| and procedures to be       |                                                                                                                                                                    |
| applied:                   |                                                                                                                                                                    |
| Frequency:                 | Annually                                                                                                                                                           |
| QA/QC procedures to        | The share of electricity generation from coal and fuel oil will be taken                                                                                           |
| be applied:                | from official statistics, as well as the total emission amounts for NOx and                                                                                        |
|                            | SO <sub>2</sub> by electricity production. (referred from TUİK)                                                                                                    |
| Any comment:               |                                                                                                                                                                    |

| Data / Parameter:    | Employment ( Job quality )                                                   |
|----------------------|------------------------------------------------------------------------------|
| Data unit:           | -                                                                            |
| Description:         | The job quality can be improved by providing relevant trainings to           |
|                      | employees during both construction and operation phases.                     |
| Source of data:      | Training certificates of employees                                           |
| Description of       | The employees should be trained on first aid, health and safety issues and.  |
| measurement methods  | There is also technical training on the operation of the equipment. The      |
| and procedures to be | trainees receive a certificate to participants after those trainings. Hence, |
| applied:             | the participation of employees to those training can be monitored by         |
|                      | means of certificates provided.                                              |
| Frequency:           | Annually                                                                     |
| QA/QC procedures to  | The trainees receive a certificate after the trainings provided by project   |
| be applied:          | owner.                                                                       |
| Any comment:         |                                                                              |

| Data / Parameter:    | Employment ( Job quantity )                                                 |
|----------------------|-----------------------------------------------------------------------------|
| Data unit:           |                                                                             |
| Description:         | The project activity will create a substantial number of jobs.              |
| Source of data:      | Domicile and social security records or via the web portal of SSK.          |
| Description of       | The personnel employed will be registered to the Social Security            |
| measurement methods  | Institution of Turkey (SSK). The number of the personnel will be            |
| and procedures to be | monitored by the domicile and Social Security Institution documents.        |
| applied:             | Domicile documents will prove how many people had been employed.            |
|                      | Apart from the documents the registration of an employee to the Social      |
|                      | Security Institution may be monitored by the web portal of SSK by           |
|                      | simply entering the ID number of the respective employee.                   |
| Frequency:           | Annually                                                                    |
| QA/QC procedures to  | All employees in all sectors shall be registered to SSI portal with respect |
| be applied:          | to Turkish laws.                                                            |
| Any comment:         |                                                                             |

| Data / I al anicter . | Data / Parameter: Liv | hood of the poor |
|-----------------------|-----------------------|------------------|
|-----------------------|-----------------------|------------------|

| Data unit:           | -                                                                            |
|----------------------|------------------------------------------------------------------------------|
| Description:         | The employment of local people within the proposed project creates an        |
|                      | additional income to the local community, influencing the poverty            |
|                      | alleviation, particularly in the rural areas, and accelerates the regional   |
|                      | economic development.                                                        |
| Source of data:      | The social security institution records of recruited stuff                   |
| Description of       | The number of locally recruited stuff                                        |
| measurement methods  |                                                                              |
| and procedures to be |                                                                              |
| applied:             |                                                                              |
| Frequency:           | Annually                                                                     |
| QA/QC procedures to  | All employees in all kinds of sectors shall be registered to SSI portal with |
| be applied:          | respect to Turkish laws.                                                     |
| Any comment:         |                                                                              |

| Data / Parameter:    | Human and institutional capacity                                              |
|----------------------|-------------------------------------------------------------------------------|
| Data unit:           | -                                                                             |
| Description:         | The local people who will be employed within the proposed project will        |
|                      | be trained on for instance; workers health and safety issues. Hence, the      |
|                      | skills of plant staff, as the local people will be developed which results in |
|                      | an improvement of human capacity.                                             |
| Source of data:      | The number of training certificates                                           |
| Description of       | Educations and trainings are part of monitoring. The measurement of           |
| measurement methods  | improved skills of plant staff by the way of training certificates is the     |
| and procedures to be | method of measurement. The frequency of monitoring is once for                |
| applied:             | crediting period                                                              |
| Frequency:           | Annually                                                                      |
| QA/QC procedures to  | The training certificates will be in consensus with QA/QC procedures.         |
| be applied:          |                                                                               |
| Any comment:         |                                                                               |

| Data / Parameter:    | Balance of payments (sustainability)                                         |
|----------------------|------------------------------------------------------------------------------|
| Data unit:           | -                                                                            |
| Description:         | The project and its role in strengthening the sustainable sector of          |
|                      | electricity generation in Turkey tend to contribute to mitigation of import  |
|                      | dependency Electricity generation from hydro power sources is                |
|                      | completely independent from any imports and thus does not have any           |
|                      | negative effects on the balance of payments.                                 |
| Source of data:      | The avoided natural gas and liquid fuel import amount for electricity        |
|                      | production. The data will obtained from annual TEAİŞ statistics.             |
| Description of       | Through comparing electricity generated by the proposed project and          |
| measurement methods  | natural gas, liquid fuel amount that would be used to produce the same       |
| and procedures to be | amount of electricity. The positive effect of this project to this indicator |
| applied:             | will be monitored by calculation of avoided natural gas and liquid fuel      |
|                      | import amount for electricity production.                                    |
| Frequency:           | Annually                                                                     |
| QA/QC procedures to  | The share of electricity generation from natural gas and liquid petroleum    |

| be applied:  | fuels, total natural gas and liquid petroleum fuels amounts used for<br>electricity production and electricity production amount of natural gas and |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|              | liquid petroleum fuels will be taken from official statistics.                                                                                      |
| Any comment: |                                                                                                                                                     |

| Data / Parameter:    | Cap <sub>PJ</sub>                                                           |
|----------------------|-----------------------------------------------------------------------------|
| Data unit:           | W                                                                           |
| Description:         | Installed capacity of the hydro power plant after the implementation of the |
|                      | project activity                                                            |
| Source of data:      | Project site                                                                |
| Description of       | The aggregation of capacities of each turbine which produces electricity.   |
| measurement methods  | The name plates of turbines will be photographed annually and cross         |
| and procedures to be | checked with the value of installed capacity designated in the electricity  |
| applied:             | production license.                                                         |
| Frequency:           | Annually                                                                    |
| QA/QC procedures:    | -                                                                           |
| Any comment:         | -                                                                           |

### **B.7.2** Description of the monitoring plan:

A professional monitoring system is required for the plant to verify the actual emission reduction. Since the emission reductions have to be verified continuously for the whole operation process, a monitoring plan is established.

The generated electricity will already be recorded by both TEIAS monthly and measured by the project owner continuously for billing purposes. Hence no new additional protocol will be needed to monitor the electricity generation. The Plant Manager will be responsible for the electricity generated, gathering all relevant data and keeping the records on daily basis. They will be informed about VER concepts and mechanisms and how to monitor and collect the data which will be used for emission reduction calculations.

The generation data collected during the first crediting period will be submitted to EN-ÇEV Energy Environmental Investments and Consultancy Limited Company who will be responsible for calculating the emission reduction subject to verification: Generation data will be used to prepare monitoring reports which will be used to determine the emission reduction from the project activity. These reports will be submitted to the duly authorized and appointed Designated Operational Entity –DOE- before each verification period.

TEIAS is responsible for both installation of the metering devices and data monitoring as per regulations. Two metering devise will be used for monitoring the electricity generated by proposed project; one for the main metering, the second one is used as spare (cross check). In case of discrepancy between the two devices, TEIAS will conduct the necessary calibration works or the maintenance.

In case of a major failure at both metering at the same time, electricity generation by the plant since the last measurement will be able to be monitored by another metering device at the inlet of the main substation operated by TEIAS where the electricity is fed to the grid.

Calibration of the metering devices will be made by TEIAS and sealed during first operation of the plant. Pursuant to "Measurement Equipment Inspection Regulation" of the Ministry of Commerce and Industry, Article 9." <sup>88</sup> periodical inspections of electrical meters and the related current and voltage transformers are controlled every ten years. The meters will be calibrated by TEIAS when there is a significant inconsistency between two devices using a fixed template<sup>89</sup> or upon request by either project owner or TEIAS<sup>90</sup>. The manufacturers of the electrical meters do not require any periodical calibration.

In addition to two metering devices, the generated electricity can be cross checked from the website<sup>91</sup> of TEIAS-PMUM (Market Financial Settlement Centre). However it must be noted that PMUM web page will show the net electricity generated; less transmission loss, in order to match the data, the figures taken from PMUM web site must be multiplied by transmission loss factor of the grid. The data which will be the basis of the emission reduction is including transmission loss however excluding internal consumption of power plant.

The net electricity fed to the grid will be measured continuously by metering devices and recorded by TEIAS monthly and form the basis for invoicing using the template formed by TEIAS<sup>92</sup>. The production operator of plant will record the generation data monthly. For consistency, recorded data will be compared with electricity sale receipts. All data collected will be recorded daily and archived both as electronically and as hard copy for at least two year after the end of last crediting period in order to be able to monitor the archived net electricity production. When the power plant starts to generate electricity, the data recording will be started. Every record will be achieved for at least two years after its measurement.

The institutional arrangement of plant staff during operation of plant is planned to employ 3 people. The proper arrangement of staff tasks and distribution of these tasks result in higher efficiency in all fields and systematic monitoring of plant. The figure below shows the arrangement and the distributed tasks follow.



Figure 8: Institutional Arrangement of Plant Staff during Operation

**Operating Manager:** Overall responsibilities of compliance with VER monitoring plan and operation of plant and operating the power plant.

<sup>&</sup>lt;sup>88</sup> Retrieved from http://www.mevzuat.adalet.gov.tr/html/21179.html

<sup>&</sup>lt;sup>89</sup> Retrieved from http://www.teias.gov.tr/mali/GDUY/PRO\_FORM/OLCUM/DAG02.xls

<sup>&</sup>lt;sup>90</sup> Retrieved from http://www.epdk.gov.tr/english/regulations/electric/balancing/balancing.doc

<sup>&</sup>lt;sup>91</sup> Please see http://pmum.teias.gov.tr

<sup>92</sup> Retrieved from http://www.teias.gov.tr/mali/GDUY/PRO\_FORM/OLCUM/K01.xls

**Operator-Technician:** Responsible for keeping data to day running of plant, recording, monitoring of relevant data and periodical reporting. Staff will responsible for day to day operation and maintenance of the plant and equipment. All staff will be trained and will have certificate for working with high voltage equipment.

Accounting and Chancellery: Responsible for keeping data about power sales, invoicing and purchasing.

**EN-ÇEV (The Consultant):** Responsible for emission reduction calculations, preparing monitoring report and periodical verification process.

The potential sustainable development benefits of Kuzkaya Weir and HEPP will be monitored as per effected indicators of sustainable development matrix. Those indicators are either crucial for an overall positive impact on sustainable development or particularly sensitive to changes in the framework conditions.

The environmental development of monitored by the indicator; air quality. The parameter of air quality is determined by the calculated amount of  $CO_2$  emission reductions by the way of proposed project activity.

The economic and technological development is monitored by the way of indicators; balance of payments and job quantity. The parameter of balance of payments is calculation of avoided natural gas import amount for electricity production. The parameter of job quantity is number of personnel from Social Security Institution documents.

The social development is monitored by the way of indicators; human and institutional capacity, livelihood of the poor and job quality. The parameter of human & institutional capacity and job quality is number of acquired certificates of trained personnel (training certificates). The parameter of livelihood of the poor is the number of locally recruited stuff.

All of these parameters will be monitored annually. Based on the monitoring plan, the data will be gathered and will be reported on the sustainable development attributed to the Project. For detailed information please refer to tables at section B.7.1.

**B.8** Date of completion of the application of the baseline and monitoring methodology and the name of the responsible person(s)/entity(ies)

### Date of completing the final draft of this baseline section: 23/09/2011

#### Name of entity determining the baseline:

EN-ÇEV Enerji Çevre Yatırımları ve Danışmanlığı Ltd. Şti. EN-ÇEV which is the carbon consultant of Kuzkaya Weir and HEPP project is not a project participant.

Address: Mahatma Gandi Caddesi, No: 92/2-3-4-6-7 06680 G.O.P – Ankara/ TURKEY Tel: +90 312 447 26 22 Fax: +90 312 446 38 10 Contact Person: Özer Emrah Öztürk E-mail: emrah@encev.com.tr

# SECTION C. Duration of the project activity / crediting period

# C.1 Duration of the <u>project activity</u>:

### C.1.1. Starting date of the project activity:

01/05/2013 -expected-

### C.1.2. Expected operational lifetime of the project activity:

Starting from the date, 12/05/2011, the electricity production license was issued to project owner for 49 years.

The plant will be delivered to the government at the end of operation period gratuitously. The expected operational lifetime of the project is estimated at about 45 years 11 days, considering that the starting date of operation is 01/05/2015.

As per "Tool to determine the remaining lifetime of the equipment" EB 50, Annex 15, the technical lifetime is defined as the total time for which the equipment is technically designed to operate from its first commissioning. Besides, the remaining lifetime (RL) of the equipment is the time for which the existing equipment can continue to operate before it has to be replaced/discarded for technical reasons, such as the age of the equipment, safety reasons, or deteriorated performance.

The remaining lifetime is expressed in years or hours of operation. The remaining lifetime of electromechanical equipment is assessed since it has the shortest technical lifetime compared to other units of project activity. Since the proposed project is a greenfield plant, the technical lifetime of the equipment is equal to the remaining lifetime of the subject equipment.

Option (b) of "Tool to determine the remaining lifetime of the equipment" was chosen to determine the remaining life time of the electro mechanical equipment for the proposed project. For the electromechanical equipment, the technical life time is designated as 35 years with respect to the expert's suggestion based on his experiences on current operation and maintenance practices of electromechanical equipment. The expert opinion provides a basis for the renewal period of the electro mechanical equipment in the conducted Kuzkaya Weir and HEPP Feasibility Study Report and stated in section 9.1.4 of the mentioned Feasibility Study Report.

### C.2 Choice of the crediting period and related information:

### C.2.1. Renewable crediting period

Renewable crediting period is used for the project. The crediting period is expected to be renewed for 2 times, the length of crediting period is 7 years 0 months for each.

C.2.1.1. Starting date of the first crediting period:

01/05/2015

| C.2.1.2. | Length of the first crediting period: |  |
|----------|---------------------------------------|--|
|          | Elengen of the mot creating periout   |  |

7 years, 0 months, 0 days

### C.2.2. Fixed crediting period:

Fixed crediting period is not used for the project.

| C.2.2.1. | Starting date: |
|----------|----------------|
|----------|----------------|

C.2.2.2.

### **SECTION D. Environmental impacts**

# **D.1.** If required by the <u>host Party</u>, documentation on the analysis of the environmental impacts of the project activity:

Length:

The project will contribute to improve the environmental situation in the region and in the country. Avoiding fossil fuel-based electricity will enhance the air quality and help to reduce the adverse effects on the climate. Renewable technologies and hydro power based electricity will be introduced and sustainable development will be promoted. The project activity itself will not have any significant negative impacts on humans, plants, animal life and biodiversity which were verified by the "EIA Positive Certificate".

In Turkey it is mandatory to assess projects and construction activities such as power plants, factories, mining projects and large buildings in terms of physicochemical aspects, ecology, socio-economy, socio-culture and public health. This assessment called EIA (Environmental Impact assessment). The EIA Report for Kuzkaya Weir and HEPP project was prepared as per the national EIA Regulations-EIA Required Projects, Article 7-1-b. This assessment interprets the impacts of the HEPP project to project site and environment in detail. The EIA Report was submitted to the Ministry of Environment and Forestry (MoEF) in order to be evaluated by the relevant local governmental authorities and MoEF itself. After evaluation of the project and comments of the local authorities, the Ministry of Environment and Forestry has concluded that the project does not have significant environmental effects and the EIA assessment is considered as positive for the project activities. Here at, the EIA Report of Kuzkaya Weir and HEPP was approved by MOEF on 25/03/2011.

For detailed information regarding the environmental impacts of the project activity please see section A.4.2 and GS Passport for SDM and relevant mitigation measures.

**D.2.** If environmental impacts are considered significant by the project participants or the <u>host Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

The project has been assessed by its environmental and social affects and has been granted Ministry's decision on the environmental acceptability of the project based on the findings of the

Environmental Assessment Committee. There have not been identified any significant environmental impacts of the Project due to the mitigation measures to be implied during both construction and operation phases.

### SECTION E. Stakeholders' comments

# E.1. Brief description how comments by local stakeholders have been invited and compiled:

According to the Gold Standard Toolkit, the project consultant, EN-ÇEV Energy Environmental Investments Consultancy L.C. invited local residents, local/national policy makers, and local/national/international NGOs via mail and follow-up calls.

An invitation letter and non-technical project summary were sent out in Turkish fax/mail to the stakeholders mentioned above. Furthermore, an announcement was published in Turkish in the /regional newspaper "Kastamonu Sözcü" on 23/07/2010.

The English version of announcement is as follows:

We have the pleasure of inviting you to participate in the Public Stakeholder Consultation Meeting of the Kuzkaya Weir and Hydroelectric Power Plant Project that is planned to be constructed in Province of Kastamonu, Araç District. The aim the of the meeting is to obtain feedback and provide information about the project and its significance in Gold Standard Organization Platform due to leading reduction in carbon emissions.

Location: İğdir Merkez Village, İğdir Primary School, Araç/Kastamonu Date: 28.07.2010 Time: 11.00 Consultant: EN-ÇEV Energy Environmental Investments Consultancy L. C. Address: Mahatma Gandi Cad. No: 92/2 GOP/ANKARA Tel: 0 312 447 26 22 Fax: 0 312 446 38 10 www.encev.com.tr Investor: Murat Kaan Electricity Production Inc.

The Local Stakeholder Consultation meeting was realized on 28/07/2010 with the attendance of 16 local residents. Supporters of Gold Standard Organizations i.e WWF, Greenpeace and REC Turkey have been informed about the project, however they did not attend.

Prior to blind sustainable development exercise, questions and comments were taken from participants about further clarification of project. Questions and comments raised by participants were addressed in assessment of comments part.

In brief, the meeting was ended after the project was explained and discussed with the participants. The support of the participant for the project was easily observed.

### E.2. Summary of the comments received:

In the Local Stakeholder Consultation Meeting, the stakeholders are pleasant about the project. The briefing was found affirmative and informative. Since they have informed regarding the

UNFCCO

# CDM – Executive Board

project at the first stakeholder consultation process they have no negative comments on the project.

It is observed that all people support the project especially accordingly the certain employment opportunities and possible economic development of the distinct. Four important issues for stakeholders are stated below.

In the referred meeting;

- It is observed that all people support the project. But care for minimum environmental destruction during construction works is desired.
- Request is made to choose the staff to be employed in the plant from among the local people as much as possible.
- All attendance agrees upon the opinion that these types of projects should be supported since they don't cause carbon emission and thus, global heating.
- Local people believe that the region shall develop socially and economically with the mentioned project.

### E.3. Report on how due account was taken of any comments received:

No major concerns were raised during the entire initial stakeholder consultation process. During the consultation, the concerns of stakeholders (unemployment, waste, pollution and noise) have been taken into consideration all the way. The defined minimum water flow shall always be released continuously into the river basin, without using it, as required by DSI (State Hydraulic Works) by regulations. The employees were primarily chosen from the region. The company's construction works are under the legal limits and no complaints have been received. Moreover, the company has been following the regulations for waste management. All necessary actions will be taken in due course to compensate any damages owing to construction of weir and HEPP. (Please see more details in LSC Report provided to GS)

The stakeholders have not raised any concerns, any important suggestions and negative opinion regarding the project, which may necessitate revisiting sustainability assessment. Therefore sustainable assessment is not going to be revisited as well as no alteration in project design will be done.

# ANNEX 1

# CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

| Organization:    | Murat Kaan Elektrik Üretim A.Ş.      |
|------------------|--------------------------------------|
| Street/P.O.Box:  | Çukurambar Mah. 1459 Cad. 1465. Sok. |
| Building:        | No.5/2                               |
| City:            | Çankaya/ANKARA                       |
| State/Region:    |                                      |
| Postfix/ZIP:     |                                      |
| Country:         | Turkey                               |
| Telephone:       | +90 312 284 43 30                    |
| FAX:             |                                      |
| E-Mail:          | info@usragroup.com                   |
| URL:             |                                      |
| Represented by:  | İbrahim USTAOĞLU                     |
| Title:           |                                      |
| Salutation:      |                                      |
| Last Name:       | USTAOĞLU                             |
| Middle Name:     | -                                    |
| First Name:      | İbrahim                              |
| Department:      |                                      |
| Mobile:          |                                      |
| Direct FAX:      |                                      |
| Direct tel:      |                                      |
| Personal E-Mail: |                                      |

#### Annex 2

#### **ODA DECLARATION**



# Annex 3

### **BASELINE INFORMATION**

#### Table 30: Power plants added to capacity in year 2010

| Power plants added to capacity in year 2010                       | Installed<br>capacity<br>(MW) | Grid connected<br>generator<br>/Autoproducer | Fuel type                  | Commissioning<br>date | Electricity<br>generation<br>(GWh) |
|-------------------------------------------------------------------|-------------------------------|----------------------------------------------|----------------------------|-----------------------|------------------------------------|
| ETİ SODA ÜRE.PAZ.NAK.VE ELK.ÜRE.SAN.                              | 24.000                        | auto                                         | lignite                    | 22.01.2010            |                                    |
| CAN TEKSTİL (Çorlu/TEKİRDAĞ)                                      | 7.832                         | auto                                         | N.gas                      | 28.01.2010            |                                    |
| ALTINMARKA                                                        | 4.600                         | auto                                         | N. gas                     | 28.01.2010            |                                    |
| CEV ENERJİ ÜRETİM (GAZİANTEP ÇÖP<br>BİOGAZI)                      | 1.131                         | grid connected                               | biogas                     | 01.02.2010            | 8.6                                |
| AKBAŞLAR (İlave)                                                  | 1.540                         | auto                                         | N. gas                     | 18.02.2010            |                                    |
| ORTADOĞU ENERJİ (ODA YERİ) (Eyüp/İST.)                            | 4.245                         | grid connected                               | landfill gas               | 24.02.2010            | 33.357                             |
| GLOBAL ENERJİ (PELİTLİK)                                          | 3.544                         | grid connected                               | n. Gas                     | 26.02.2010            | 27.056                             |
| KONYA ŞEKER SAN. VE TİC. A.Ş.                                     | 6.000                         | auto                                         | Lingite                    | 26.02.2010            |                                    |
| FLOKSER Tekstil (Çatalça-İstanbul)(Süetser tesisi)                | -2.128                        | auto                                         | N. gas                     | 28.02.2010            |                                    |
| RASA ENERJİ (VAN)                                                 | 26.190                        | grid connected                               | n. Gas                     | 03.03.2010            | 166.622                            |
| AKSA ENERJİ (ANTALYA)                                             | 25.000                        | grid connected                               | n. Gas                     | 20.03.2010            | 192.5                              |
| FRİTOLAY GIDA SAN. VE TİC A.Ş.                                    | 0.065                         | auto                                         | BİOGAZ                     | 21.04.2010            |                                    |
| YILDIZ ENTEGRE AĞAÇ (Kocaeli)                                     | 12.368                        | auto                                         | DOĞALGAZ                   | 22.04.2010            |                                    |
| ITC-KA ENERJI (SINCAN)                                            | 1.416                         | grid connected                               | landfill gas               | 30.04.2010            | 11.125                             |
| ATAER ENERJI ELEKTRIK URETIM A.Ş.                                 | 49.000                        | grid connected                               | liquid+n. Gas              | 05.05.2010            | 277.885                            |
| CENGIZ ENERJI SAN. VE TIC. A.Ş. (Tekkeköy)                        | 101.950                       | grid connected                               | n. Gas                     | 22.05.2010            | 802                                |
| SIMKO(Kartal)                                                     | -2.054                        | auto                                         | DOGALGAZ                   | 27.05.2010            | 405.126                            |
| UGUR ENERJI URETIM TIC. VE SAN. A.Ş.                              | 48.200                        | grid connected                               | n. Gas                     | 21.06.2010            | 405.136                            |
| SOKTAŞ (NTLPO)(Aydılı)                                            | -4.300                        | auto                                         | NAFIA<br>n Coa             | 23.00.2010            | 102.5                              |
| ALTEK ALARKO ELEKTRIK SANTRALLARI                                 | 23.000                        | grid connected                               | n. Gas                     | 10.07.2010            | 192.5                              |
| EREN ENER IÍ EL EKTRÍK ÜRETÍM A S                                 | 160.000                       | grid connected                               | imported coal              | 15.07.2010            | 1068 235                           |
| FLOKSER TEKSTIL (Cerkezköv/TEKİRDAĞ)                              | 5 172                         | auto                                         | DOĞALGAZ                   | 17.07.2010            | 1008.233                           |
| RB KARESI İTHALAT İHRACAT TEKSTIL                                 | 8 600                         | auto                                         | DOĞALGAZ                   | 23 07 2010            |                                    |
| CENGIZ ENERJI SAN VE TIC A S (Tekkeköv)                           | 101 950                       | grid connected                               | n gas                      | 31.07.2010            | 802                                |
| KESKİNOĞLU TAVUKCULUK VE DAM. İSL.                                | 3.495                         | auto                                         | DOĞALGAZ                   | 11.08.2010            |                                    |
| BİNATOM ELEKTRİK ÜRETİM A.Ş.                                      | 2.000                         | grid connected                               | n. gas                     | 17.08.2010            | 13                                 |
| CAN ENERJİ ELEKTRİK ÜR. A.Ş.(Tekirdağ)                            | 29.100                        | grid connected                               | n. gas                     | 19.08.2010            | 169.017                            |
| KURTOĞLU BAKIR KURŞUN SAN. A.Ş.                                   | 1.585                         | auto                                         | DOĞALGAZ                   | 19.08.2010            |                                    |
| SÖNMEZ ENERJÍ ÜRETÍM (UŞAK)                                       | 33.242                        | grid connected                               | n. gas                     | 26.08.2010            | 256.297                            |
| ITC ADANA BİOKÜTLE SANT.                                          | 11.320                        | grid connected                               | landfill gas               | 02.09.2010            | 80                                 |
| KIRKA BORAKS(Kırka) (Eti Maden İşl.) (İlave)                      | 10.000                        | auto                                         | SIVI+D.GAZ                 | 29.09.2010            |                                    |
| ENERJİ-SA (BANDIRMA)                                              | 1000.000                      | grid connected                               | n. gas                     | 07.10.2010            | 7540                               |
| UĞUR ENERJİ ÜR. TİC.VE SAN. A.Ş. (İlave)                          | 12.000                        | grid connected                               | n. gas                     | 07.10.2010            | 100.864                            |
| ENERJİ-SA (BANDIRMA) (Düzeltme)                                   | -69.200                       | grid connected                               | n. gas                     | 25.10.2010            | correction                         |
| ITC ADANA BİOKÜTLE SANT. (Düzeltme)                               | -1.415                        | grid connected                               | landfill gas               | 25.10.2010            | correction                         |
| EREN ENERJİ ELEKTRİK ÜR. A.Ş. (İlave)                             | 600.000                       | grid connected                               | imported coal              | 01.11.2010            | 4005.882                           |
| MARMARA PAMUKLU MENSUCAT (Ilave)                                  | 26.190                        | auto                                         | DOGALGAZ                   | 25.11.2010            |                                    |
| ALIAGA ÇAKMAKTEPE ENERJI (Ilave)                                  | 69.840                        | grid connected                               | n. gas                     | 26.11.2010            | 557.919                            |
| FRITOLAY GIDA SAN. VE TIC A.Ş. (Ilave)                            | 0.330                         | auto                                         | BIOGAZ                     | 26.11.2010            | 10 - 10                            |
| SONMEZ ENERJI URETIM (UŞAK) (Ilave)                               | 2.564                         | grid connected                               | n. gas                     | 07.12.2010            | 19.768                             |
| AK-ENERJI (UŞAK USB)(Uşak-Ak.en.)                                 | -15.240                       | grid connected                               | liquid+n. Gas              | 09.12.2010            | closed                             |
| AK-ENEKJI(DG+N) (Deba-Denizii)                                    | -15.600                       | grid connected                               | liquid+n. Gas              | 09.12.2010            | closed                             |
| I UPKAŞ KAFINEKI (IZWIT) (Have)                                   | 40.000                        | auto                                         | SIVI+D.GAZ                 | 15.12.2010            |                                    |
| ALTEK ALADKO ELEKTDİV SANTDALLADI                                 | 21 800                        | auto<br>grid connected                       | DUGALGAZ                   | 10.12.2010            | 151 361                            |
| ALTER ALARRO ELERTRIR SANTRALLARI<br>AKSA ENERII (Demirtas/RURSA) | _1 400                        | grid connected                               | 11. gas<br>renewable+wasta | 21 12 2010            | closed                             |
| RASA ENERII (VAN) (İlave)                                         | 10.124                        | grid connected                               | n gas                      | 29 12 2010            | 64 409                             |
| FREN ENERII ELEKTRIK ÜR AS (İlave)                                | 600.000                       | grid connected                               | imported coal              | 29 12 2010            | 4005 882                           |
| SİLOPİ ELEKTRİK ÜR A S (ESENBOĞA)                                 | -44 784                       | grid connected                               | FUEL-OIL                   | 31 12 2010            | closed                             |
| VALOVA FLVAF                                                      | _12 300                       | auto                                         | DOĞALGAZ                   | 31.12.2010            | 010500                             |
| Y ALOVA EL Y AF                                                   | =12.000                       | auto                                         |                            |                       | -                                  |
| AK TEKSTİL-1 (G.antep)                                            | -13.040                       | auto                                         | FUEL-OİL                   | 31.12.2010            |                                    |

|        | INTERNATIONAL HOSPITAL İSTANBUL AŞ.   | 0.770   | auto           | DOĞALGAZ   | 31.12.2010   |           |
|--------|---------------------------------------|---------|----------------|------------|--------------|-----------|
|        |                                       |         |                |            |              | 21366.984 |
| ermal  | TUZLA JEOTERMAL                       | 7.500   | grid connected | geothermal | 13.01.2010   | 55        |
| Geothe | MENDERES GEOTERMAL DORA-2             | 9.500   | grid connected | geothermal | 26.03.2010   | 73        |
|        |                                       |         |                |            | Geoth. total | 128       |
|        | SELİMOĞLU REG. VE HES                 | 8.800   | grid connected | run-off    | 07.01.2010   | 35        |
|        | KULP IV HES (YILDIZLAR EN.ELK.ÜR.AŞ.) | 12.298  | grid connected | run-off    | 13.01.2010   | 41        |
|        | CINDERE HES (Ilave)                   | 9.065   | grid connected | dam        | 21.01.2010   | 28.2      |
|        | BAYBURT HES (BAYBURT ENERJİ ÜRET.)    | 14.631  | grid connected | run-off    | 28.01.2010   | 51        |
|        | UZUNÇAYIR HES (Tunceli) (İlave)       | 27.330  | grid connected | dam        | 28.01.2010   | 107.32    |
|        | ALAKIR HES (YURT ENERJI URETIM)       | 2.060   | grid connected | run-off    | 29.01.2010   | 6         |
|        | PETA MUHENDISLIK EN. (MURSAL II HES)  | 4.500   | grid connected | run-off    | 19.02.2010   | 19        |
|        | ASA ENERJI (KALE REG.ve HES)          | 9.570   | grid connected | run-off    | 19.02.2010   | 32        |
|        | HETAŞ HACISALIHOGLU (YILDIZLI HES)    | 1.200   | grid connected | run-off    | 23.02.2010   | 5         |
|        | DUGUBAY ELEKTRIK (SARIMEHMET HES)     | 3.100   | grid connected | run-off    | 11.03.2010   | 10        |
|        | NUKYUL ENEKJI (DEFNE KEG. VE HES)     | 7.230   | grid connected | run-oll    | 20.03.2010   | 22        |
|        | DIDIM HIDD ÜDETIM AS (EDEELEV HES)    | 3.913   | grid connected | run off    | 01.04.2010   | 21.54/    |
|        | BEVTEK EL ÜR AS (CATALOLIK HES)       | 9.540   | grid connected | run off    | 07.04.2010   | 9.5       |
|        | NISAN E MEKANIK EN (BASAK REG HES)    | 6.850   | grid connected | run-off    | 09.04.2010   | 22        |
|        | UZUNCAYIR HES (Tunceli) (İlaye)       | 27 330  | grid connected | dam        | 11.04.2010   | 107.32    |
|        | FIRTINA ELEKTRİK ÜR A S (SÜMER HES)   | 21.550  | grid connected | run-off    | 16.04.2010   | 70        |
|        | KAR-EN KARADENÍZ EL A S. ARALIK HES   | 12.410  | grid connected | run-off    | 30.04.2010   | 56        |
|        | BİRİM HİDR. ÜRETİM AS. (ERFELEK HES)  | 3.225   | grid connected | run-off    | 14.05.2010   | 9.5       |
|        | KARADENİZ EL.ÜRET. (UZUNDERE-1 HES)   | 31.076  | grid connected | run-off    | 27.05.2010   | 82.5      |
|        | AKIM ENERJİ (CEVİZLİK REG. VE HES)    | 91.400  | grid connected | run-off    | 28.05.2010   | 330       |
|        | ÇAKIT HES (ÇAKIT ENERJİ A.Ş.)         | 20.180  | grid connected | run-off    | 01.06.2010   | 96        |
|        | CEYHAN HES (OŞKAN HES) (ENOVA EN.)    | 23.889  | grid connected | run-off    | 03.06.2010   | 98        |
|        | ERENLER REG. ve HES (BME BİR.MÜT.EN.) | 45.000  | grid connected | run-off    | 04.06.2010   | 85        |
|        | PAŞA REG. VE HES (ÖZGÜR ELEKTRİK)     | 8.680   | grid connected | run-off    | 11.06.2010   | 34        |
|        | GUZELÇAY-I HES (ILK ELEKTRIK ENERJI)  | 3.140   | grid connected | run-off    | 15.06.2010   | 16.669    |
|        | KALE REG. VE HES (KALE ENERJI UR.)    | 34.140  | grid connected | run-off    | 16.06.2010   | 116       |
|        | ERIKLI-AKOCAK REG. ve AKOCAK HES      | 41.250  | grid connected | run-off    | 30.06.2010   | 128.5     |
|        | ÇAMLIKAYA KEG. VE HES                 | 5.648   | grid connected | run-off    | 30.06.2010   | 19        |
|        | DINAK HES (ELDA ELEK IKIK UKETIM)     | 4.440   | grid connected | run-off    | 03.07.2010   | 15        |
|        | DAMLAPINAK HES (CENAT ELEKTRIK UK.)   | 38 250  | grid connected | run off    | 08.07.2010   | 92        |
|        | ÖZGÜR ELEKTRİK (AZMAK LREG VE HES)    | 5 913   | grid connected | run-off    | 10.07.2010   | 21 547    |
|        | KIRPILIK REG VE HES (ÖZGÜR ELEKTRIK)  | 6 240   | grid connected | run-off    | 11.07.2010   | 21.547    |
|        | YAVUZ REG VE HES (MASAT ENERIÍ)       | 22,500  | grid connected | run-off    | 14 07 2010   | 83        |
|        | KAYABÜKÜ REG. VE HES (ELİTE ELEKT.)   | 14.580  | grid connected | run-off    | 21.07.2010   | 49        |
|        | ERİKLİ-AKOCAK REG. ve AKOCAK HES      | 41.250  | grid connected | run-off    | 29.07.2010   | 128.5     |
|        | GÖK REG. ve HES (GÖK ENERJİ EL. SAN.) | 10.008  | grid connected | run-off    | 06.08.2010   | 43        |
|        | BULAM REG. VE HES (MEM ENERJI ELK.)   | 7.030   | grid connected | run-off    | 10.08.2010   | 33        |
|        | KARŞIYAKA HES (AKUA ENERJİ ÜRET.)     | 1.592   | grid connected | run-off    | 28.08.2010   | 8         |
|        | CEYHAN HES (BERKMAN HES)(ENOVA EN.)   | 12.605  | grid connected | run-off    | 20.08.2010   | 51.5      |
|        | GÜDÜL I REG. VE HES (YAŞAM ENERJİ)    | 2.360   | grid connected | run-off    | 25.08.2010   | 14        |
|        | CEYHAN HES (BERKMAN HES)(ENOVA EN.)   | 12.605  | grid connected | run-off    | 28.08.2010   | 51.5      |
|        | TEKTUG ELEKTRIK (ANDIRIN HES)         | 40.500  | grid connected | run-off    | 03.09.2010   | 106       |
|        | SELEN ELEKTRIK (KEPEZKAYA HES)        | 28.000  | grid connected | run-off    | 06.09.2010   | 124       |
|        | KEŞADIYE 2 HES (TURKON MNG ELEKT.)    | 26.140  | grid connected | run-ott    | 1/.09.2010   | 210       |
|        | KUZAN HES (SEK-EK ENEKJI)             | 4.000   | grid connected | run-off    | 21.09.2010   | 9         |
|        | NADINEALE DEC. VE HES (KATIKUUGLU)    | 1.420   | grid connected | run off    | 30.09.2010   | 10        |
|        | RENKÖVREG VE HES (EDD ENEKJI)         | 21 / 56 | grid connected | run-off    | 07 10 2010   | 87        |
|        | KAHTA I HES (FRDEMVII DIZ ELEK ÜRT)   | 7 120   | grid connected | run-off    | 14 10 2010   | 35        |
|        | AZMAK-II REG VE HES (Düzeltme)        | -18 066 | grid connected | run-off    | 25 10 2010   | 0         |
|        | ULUABAT KUVVET TÜNELİ VE HES          | 48.510  | grid connected | dam        | 27.10.2010   | 186       |
|        | SABUNSUYU II HES (ANG ENERJI ELK.)    | 7.350   | grid connected | run-off    | 28.10.2010   | 21        |
| lro    | BURC BENDI VE HES (AKKUR ENERJI)      | 27.330  | grid connected | run-off    | 04.11.2010   | 113       |
| Hyd    | KARADENIZ EL (UZUNDERE-1 HES)(Ilave)  | 31.076  | grid connected | run-off    | 07.11.2010   | 82.5      |

|    | MURGUL BAKIR (C.Kaya) (İlave)          | 19.602  | grid connected | run-off | 11.11.2010  | 40.5        |
|----|----------------------------------------|---------|----------------|---------|-------------|-------------|
| ľ  | GÜZELÇAY-II HES (İLK ELEKTRİK ENERJİ)  | 4.960   | grid connected | run-off | 11.11.2010  | 26.3        |
|    | ULUABAT KUVVET TÜNELİ VE HES (İlave)   | 48.510  | grid connected | dam     | 25.11.2010  | 186         |
|    | RESADIYE 1 HES (TURKON MNG ELEKT.)     | 15.680  | grid connected | run-off | 26.11.2010  | 126         |
|    | EGEMEN 1 HES (ENERSIS ELEKTRIK)        | 8.820   | grid connected | run-off | 26.11.2010  | 319         |
|    | YEDİGÖZE HES (YEDİGÖZE ELEKTRİK)       | 155.330 | grid connected | dam     | 02.12.2010  | 474         |
| ľ  | UMUT III REG. VE HES (NİSAN ELEKTR.)   | 12.000  | grid connected | run-off | 13.12.2010  | 26          |
|    | FEKE 2 BARAJI VE HES (AKKUR ENERJİ)    | 69.340  | grid connected | dam     | 24.12.2010  | 223         |
|    | EGEMEN 1B HES (ENERSIS ELEKTRIK)       | 11.100  | grid connected | run-off | 28.12.2010  | 40.08       |
|    | KALKANDERE REG. VE YOKUŞLU HES         | 14.540  | grid connected | run-off | 30.12.2010  | 63          |
|    |                                        |         |                |         |             | 10.2.5 10.2 |
|    |                                        |         |                |         | Hydro total | 4937.483    |
|    | ROTOR ELEKTRİK (OSMANİYE RES)          | 20.000  | grid connected | wind    | 14.01.2010  | 75.5        |
|    | ASMAKİNSAN (BANDIRMA 3 RES)            | 20.000  | grid connected | wind    | 26.02.2010  | 70.83       |
|    | SOMA ENERJİ ÜRETİM (SOMA RES)          | 4.500   | grid connected | wind    | 10.03.2010  | 15          |
|    | ROTOR ELEKTRİK (OSMANİYE RES)          | 17.500  | grid connected | wind    | 10.03.2010  | 66.11       |
|    | DENİZ ELEKTRİK (SEBENOBA RES)          | 10.000  | grid connected | wind    | 12.03.2010  | 36.66       |
|    | AKDENİZ ELEKTRİK (MERSİN RES)          | 33.000  | grid connected | wind    | 19.03.2010  | 100         |
|    | ASMAKİNSAN (BANDIRMA 3 RES)            | 4.000   | grid connected | wind    | 26.03.2010  | 14.16       |
|    | BOREAS ENERJİ (BOREAS I ENEZ RES)      | 15.000  | grid connected | wind    | 09.04.2010  | 49          |
|    | ROTOR ELEKTRİK (OSMANİYE RES)          | 17.500  | grid connected | wind    | 09.04.2010  | 66.11       |
|    | BERGAMA RES EN. ÜR. A.Ş. ALİAĞA RES    | 52.500  | grid connected | wind    | 09.04.2010  | 207.08      |
|    | BAKRAS EN. ELKT.ÜR. A.Ş. ŞENBÜK RES    | 15.000  | grid connected | wind    | 22.04.2010  | 47          |
|    | ALİZE ENERJİ (KELTEPE RES)             | 1.800   | grid connected | wind    | 28.04.2010  | 6.34        |
|    | ROTOR ELEKTRİK (GÖKÇEDAĞ RES)          | 20.000  | grid connected | wind    | 05.06.2010  | 75.5        |
|    | SOMA ENERJİ ÜRETİM (SOMA RES)          | 7.200   | grid connected | wind    | 10.06.2010  | 24          |
|    | BERGAMA RES EN. ÜR. A.Ş. ALİAĞA RES    | 37.500  | grid connected | wind    | 16.06.2010  | 147.91      |
| nd | MAZI-3 RES ELEKTRİK (MAZI-3 RES)       | 7.500   | grid connected | wind    | 18.06.2010  | 26.25       |
| Wi | BORASKO ENERJİ (BANDIRMA RES)          | 12.000  | grid connected | wind    | 30.06.2010  | 47.78       |
|    | ZİYARET RES (ZİYARET RES ELEKTRİK)     | 12.500  | grid connected | wind    | 15.07.2010  | 50          |
|    | SOMA ENERJİ ÜRETİM (SOMA RES)          | 7.200   | grid connected | wind    | 28.07.2010  | 24          |
|    | SOMA RES (BİLGİN RÜZGAR SAN. EN.ÜR.)   | 32.500  | grid connected | wind    | 13.08.2010  | 110.86      |
|    | SOMA ENERJİ ÜRETİM (SOMA RES)          | 6.300   | grid connected | wind    | 20.08.2010  | 21          |
|    | BELEN ELEKTRİK (BELEN RES) (İlave)     | 6.000   | grid connected | wind    | 02.09.2010  | 19          |
|    | ÜTOPYA ELEKTRİK (DÜZOVA RES) (İlave)   | 15.000  | grid connected | wind    | 03.09.2010  | 46          |
|    | SOMA RES (BİLGİN RÜZGAR SAN) (İlave)   | 27.500  | grid connected | wind    | 23.09.2010  | 93.8        |
| -  | SOMA ENERJİ ÜRETİM (SOMA RES) (İlave)  | 9.000   | grid connected | wind    | 01.10.2010  | 30          |
|    | ZİYARET RES (ZİYARET RES ELEK.)(İlave) | 22.500  | grid connected | wind    | 13.10.2010  | 90          |
|    | ROTOR ELEKTRİK (GÖKÇEDAĞ RES) (İlave)  | 2.500   | grid connected | wind    | 15.10.2010  | 9.4         |
|    | SOMA RES (BİLGİN RÜZGAR SAN.)(İlave)   | 30.000  | grid connected | wind    | 11.11.2010  | 102.33      |
|    | KUYUCAK RES (ALİZE ENERJİ ÜRET.)       | 8.000   | grid connected | wind    | 11.11.2010  | 34.375      |
|    | KUYUCAK RES (ALİZE ENERJİ ÜR.) (İlave) | 17.600  | grid connected | wind    | 09.12.2010  | 75.625      |
|    | SARES RES (GARET ENERJİ ÜRETİM)        | 15.000  | grid connected | wind    | 22.12.2010  | 60          |
|    | TURGUTTEPE RES (SABAŞ ELEKTRİK ÜR.)    | 22.000  | grid connected | wind    | 30.12.2010  | 64          |
|    |                                        |         |                |         | Wind total  | 1905.62     |
|    |                                        |         |                |         |             |             |

CDM registered projects are indicated with colour

# Table 31: Power plants added to capacity in year 2009

| Power plants added to capacity in year 2009<br>(only grid connected ones) | Installed<br>capacity<br>(MW) | Electricity<br>generation<br>(GWh) | Fuel type   |
|---------------------------------------------------------------------------|-------------------------------|------------------------------------|-------------|
| ITC-KA ENERJİ (SİNCAN)                                                    | 2.8                           | 22                                 | waste       |
| ITC-KA ENERJİ MAMAK KATI ATIK TOP.MERK.                                   | 2.8                           | 21.062                             | waste       |
| ORTADOĞU ENERJİ (KÖMÜRCÜODA)                                              | 5.8                           | 45                                 | waste       |
| ORTADOĞU ENERJİ (ODA YERİ) (İlave)                                        | 4.2                           |                                    |             |
| ORTADOĞU ENERJİ (ODA YERİ) (İlave)                                        | 5.7                           | 77.953                             | waste       |
|                                                                           |                               | 144.953                            | Waste total |
| ALKİM ALKALİ KİMYA (Cihanbeyli/KONYA)                                     | 0.4                           | 3                                  | lignite     |
| SİLOPİ ELEKTRİK ÜRETİM A.Ş.                                               | 135                           | 945                                | asfaltit    |

| İÇDAŞ ÇELİK (İlave)                          | 2x135 | 1923.33   | imported coal    |
|----------------------------------------------|-------|-----------|------------------|
|                                              |       | 2871.33   | Coal total       |
| GÜRMAT ELEKT. (GÜRMAT JEOTERMAL)             | 47.4  | 313       | Geothermal total |
| CARGILL TARIM VE GIDA SAN. TİC. A.Ş.         | 0.1   | 0.7       | Biogas total     |
| KASAR DUAL TEKSTİL SAN. A.Ş. (Çorlu)         | 5.7   | 38        | N.Gas            |
| KEN KİPAŞ ELKT. ÜR.(KAREN) (K.Maraş)         | 17.5  | 75.36     | N.Gas            |
| MARMARA PAMUKLU MENS. SN.TİC.A.Ş.            | 34.9  | 271.53    | N.Gas            |
| MAURİ MAYA SAN. A.Ş.                         | 0.3   |           |                  |
| MAURİ MAYA SAN. A.Ş.                         | 2     | 19        | N.Gas            |
| TAV İSTANBUL TERMİNAL İŞLETME. A.Ş.          | 3.3   |           |                  |
| TAV İSTANBUL TERMİNAL İŞLETME. A.Ş.          | 6.5   | 82        | N.Gas            |
| TESKO KİPA KİTLE PAZ. TİC. VE GIDA A.Ş.      | 2.3   | 18        | N.Gas            |
| SÖNMEZ ELEKTRİK(Usak) (İlave)                | 8.7   | 67.057    | N.Gas            |
| RASA ENERJÍ (VAN)                            | 78.6  | 500       | N.Gas            |
| SELKASAN KAĞIT PAKETLEME MALZ. İM.           | 9.9   | 73        | N.Gas            |
| ZORLU ENERJİ (B.Karıştıran) (İlave)          | 49.5  | 394.96    | N.Gas            |
| NUH ÇİMENTO SAN. TİC. A.Ş.(Nuh Çim.) (İlave) | 47    | 329       | N.Gas            |
| ENTEK KÖSEKÖY(İztek) (Düzeltme)              | 0.8   |           |                  |
| ENTEK KÖSEKÖY(İztek) (Düzeltme)              | 36.3  | 98.68     | N.Gas            |
| FALEZ ELEKTRİK ÜRETİMİ A.Ş.                  | 11.7  | 88        | N.Gas            |
| GLOBAL ENERJİ (PELİTLİK)                     | 8.6   | 65.66     | N.Gas            |
| GÜL ENERJİ ELKT. ÜRET. SN. VE TİC. A.Ş.      | 24.3  | 170       | N.Gas            |
| AK GIDA SAN. VE TİC. A.Ş. (Pamukova)         | 7.5   | 61        | N.Gas            |
| AKSA AKRİLİK KİMYA SN. A.Ş. (YALOVA)         | 70    | 539       | N.Gas            |
| AKSA ENERJİ (Antalya) (Güç Değişikliği)      | 16.2  |           |                  |
| AKSA ENERJİ (Antalya) (İlave)                | 300   |           |                  |
| AKSA ENERJİ (Antalya) (İlave)                | 300   | 4744.74   | N.Gas            |
| AKSA ENERJİ (MANİSA) (İlave)                 | 10.5  |           |                  |
| AKSA ENERJİ (MANİSA) (İlave)                 | 52.4  | 498.072   | N.Gas            |
| ÇELİKLER TAAH. İNŞ. (RİXOX GRAND)            | 2     | 16        | N.Gas            |
| DALSAN ALÇI SAN. VE TİC. A.Ş.                | 1.2   | 9         | N.Gas            |
| CAM İŞ ELEKTRİK (Mersin) (İlave)             | 126.1 | 1008      | N.Gas            |
| ANTALYA ENERJİ (İlave)                       | 41.8  | 302.096   | N.Gas            |
| ARENKO ELEKTRİK ÜRETİM A.Ş. (Denizli)        | 12    | 84        | N.Gas            |
| DELTA ENERJİ ÜRETİM VE TİC.A.Ş.              | 47    |           |                  |
| DELTA ENERJİ ÜRETİM VE TİC.A.Ş. (İlave)      | 13    | 467       | N.Gas            |
| DESA ENERJİ ELEKTRİK ÜRETİM A.Ş.             | 9.8   | 70        | N.Gas            |
|                                              |       | 10089.155 | N. Gas total     |
| ERDEMİR(Ereğli-Zonguldak)                    | 39.2  | 221.02    | Fuel oil         |
| SILOPI ELEKTRIK ÜRETİM A.S.(ESENBOĞA)        | 44.8  | 315       | Fuel oil         |
| TÜPRAS RAFINERI(Aliağa/İzmir)                | 24.7  | 171.77    | Fuel oil         |
| TÜPRAS O.A.RAFİNERİ(Kırıkkale)(Düzeltme)     | 10    | 70        | Fuel oil         |
|                                              |       | 777 79    | Fuel oil total   |
| AK ENERIİ (AVVII DIZ RES)                    | 15    | 51        | Wind             |
| ALÍZE ENERIÍ (CAMSEKÍ RES)                   | 20.8  | 82        | Wind             |
| ALÍZE ENERJÍ (KELTEPE RES)                   | 18.9  | 65        | Wind             |
| ALÍZE ENERTÍ (SARIKAYA RES) (Sarköv)         | 28.8  | 96        | Wind             |
| AYEN ENERIL A S AKBÜK RÜZGAR                 | 16.8  | 70        | () Ind           |
| AYEN ENERJÍ A.S. AKBÜK RÜZGAR (Ílave)        | 14.7  | 123       | Wind             |
| BAKİ ELEKTRİK SAMLI RÜZGAR                   | 36    | 120       | 11114            |
| BAKİ ELEKTRİK SAMLI RÜZGAR                   | 33    | 337.33    | Wind             |
| BELEN ELEKTRİK BELEN RÜZGAR-HATAY            | 15    |           |                  |
| BELEN ELEKTRİK BELEN RÜZGAR-HATAY            | 15    | 95        | Wind             |
| BORASKO ENERJİ (BANDIRMA RES)                | 21    |           |                  |
| BORASKO ENERJÍ (BANDIRMA RES)                | 24    | 179       | Wind             |
| DATÇA RES (Datça)                            | 0.8   |           |                  |
| DATÇA RES (Datça)                            | 8.9   |           |                  |
| DATÇA RES (Datça) (İlave)                    | 11.8  | 61.0135   | Wind             |
| KORES KOCADAĞ RES (Urla/İZMİR)               | 15    | 56        | Wind             |
| MAZI-3 RES ELEKT.ÜR. A.Ş. (MAZI-3 RES)       | 10    |           |                  |
| MAZI-3 RES ELEKT.ÜR. A.Ş. (MAZI-3 RES)       | 12.5  | 79        | Wind             |
| ROTOR ELEKTRİK (OSMANİYE RES)                | 17.5  | 218       | Wind             |
# CDM – Executive Board

| DOTOD ELEVITRIU (OC) (ANINE DEC)       | 17.5            |           |               |
|----------------------------------------|-----------------|-----------|---------------|
| ROTOR ELEKTRIK (OSMANIYE RES)          | 17.5            |           |               |
| KOTOR ELEKTRIK (OSMANIYE RES)          | 22.5            | 11.2(0    | XX7: 1        |
| SAYALAK KUZGAK (Dogal Enerji)          | 3.6             | 11.368    | Wind          |
| SOMA ENERJI UKETIM (SOMA RES)          | 18              |           |               |
| SOMA ENERJI URETIM (SOMA RES)(Ilave)   | 10.8            |           |               |
| SOMA ENERJI URETIM (SOMA RES)(Ilave)   | 16.2            | 150       | Wind          |
| UTOPYA ELEKTRIK (DUZOVA RES)           | 15              | 46        | Wind          |
|                                        |                 | 1649.7115 | Wind total    |
| YAPISAN (KARICA REG. ve DARICA I HES)  | 48.5            |           |               |
| YAPISAN (KARICA REG. ve DARICA I HES)  | 48.5            | 328       | Hydro         |
| YESİLBAS ENERJİ (YESİLBAS HES)         | 14              | 56        | Hydro         |
| YPM GÖLOVA HES (Susehri/SİVAS)         | 1.1             | 3         | Hydro         |
| YPM SEVINDIK HES (Susehri/SIVAS)       | 5.7             | 36        | Hydro         |
| TOCAK LHES (YURT ENERJÍ ÜRETÍM SN )    | 4.8             | 13        | Hydro         |
| TÜM ENERLİ (PINAR REG. VE HES)         | 30.1            | 138       | Hydro         |
| UZUNCAYIR HES (Tunceli)                | 27.3            | 105       | Hydro         |
| ANADOLU ELEKTRİK (CAKIRLAR HES)        | 16.2            | 60        | Hydro         |
| BAĞISLI REG VE HES (CEYKAR ELEKT)      | 99              | 00        | 11juio        |
| BAĞISLI REG VE HES (CEYKAR ELEKT)      | 19.7            | 99        | Hydro         |
| BEREKET ENERIİ (KOYULHİSAR HES)        | 42              | 329       | Hydro         |
| BEYOBASI EN, ÜR, A.S. (SIRMA HES)      | 5.9             | 23        | Hydro         |
| AKUA ENERJİ (KAYALIK REG. VE HES)      | 5.8             | 39        | Hydro         |
| AKCAY HES ELEKTRIK ÜR (AKCAY HES)      | 28.8            | 95        | Hydro         |
| CINDERE HES (Denizli)                  | 19.1            |           | Hydro         |
| DENİZLİ ELEKTRİK (EGE I HES)           | 0.9             | 4         | Hvdro         |
| ELESTAS ELEKTRİK (YAYLABEL HES)        | 5.1             | 20        | Hvdro         |
| ELESTAS ELEKTRİK (YAZI HES)            | 1.1             | 6         | Hvdro         |
| DEĞİRMENÜSTÜ EN (KAHRAMANMARAS)        | 12.9            | 35.425    | Hydro         |
| FİLYOS ENERJİ (YALNIZCA REG. VE HES)   | 14.4            | 67        | Hvdro         |
| ERVA ENERJİ (KABACA REG. VE HES)       | 4.2             | • •       | )             |
| ERVA ENERJİ (KABACA REG. VE HES)       | 4.2             | 33        | Hvdro         |
| KAYEN ALFA ENERJİ (KALETEPE HES)       | 10.2            | 37        | Hydro         |
| LAMAS III - IV HES (TGT ENERJİ ÜRETİM) | 35.7            | 150       | Hvdro         |
| OBRUK HES                              | 212.4           | 473       | Hydro         |
| ÖZGÜR ELEKTRİK (AZMAK II REG.VE HES)   | 24.4            | 91        | Hydro         |
| ÖZTAY ENERJİ (GÜNAYŞE REG.VE HES)      | 8.3             | 29        | Hydro         |
| ÖZYAKUT ELEK. ÜR.A.S. (GÜNESLİ HES)    | 0.6             |           | ,             |
| ÖZYAKUT ELEK. ÜR.A.S. (GÜNESLİ HES)    | 1.2             | 8         | Hydro         |
| SİRİKÇİOĞLU EL.(KOZAK BENDİ VE HES)    | 4.4             | 15        | Hydro         |
| TASOVA YENİDEREKÖY HES (HAMEKA A.Ş.)   | 2               | 10        | Hydro         |
| TEKTUĞ (Erkenek)                       | 6               |           | <u>,</u>      |
| TEKTUĞ (Erkenek) (İlave)               | 6.5             | 50        | Hydro         |
| SARITEPE HES (GENEL DİNAMİK SİS.EL.)   | 2.5             |           | , <del></del> |
| SARITEPE HES (GENEL DİNAMİK SİS.EL.)   | 2.5             | 20        | Hvdro         |
|                                        |                 |           |               |
|                                        |                 | 2372.425  | Hydro total   |
| CDM registered projects are indica     | ted with colour |           |               |

## Table 32: Power plants added to capacity in year 2008

| Power plants added to capacity in year 2008  | Installed<br>capacity<br>(MW) | Electricity<br>generation<br>(GWh) | Fuel type |
|----------------------------------------------|-------------------------------|------------------------------------|-----------|
| AKSA ENERJİ (Antalya)                        | 183.8                         | 1290                               | N.Gas     |
| AKSA ENERJİ (Manisa)                         | 52.4                          | 79.2                               | N.Gas     |
| ANTALYA ENERJİ (İlave)                       | 17.5                          | 256.1                              | N.Gas     |
| ATAÇ İNŞAAT SAN. A.S.B.(ANTALYA)             | 5.4                           | 10                                 | N.Gas     |
| CAN ENERJİ (Çorlu-TEKİRDAĞ) (İlave)          | 52.4                          | 274.3                              | N.Gas     |
| ITC-KA Enerji Üretim A.Ş.(Mamak)(İlave)      | 14.1                          | 95.8                               | N.Gas     |
| MİSİS APRE TEKSTİL BOYA EN. SAN.             | 2                             | 5.3                                | N.Gas     |
| MODERN ENERJİ (LÜLEBURGAZ)                   | 13.4                          | 508.9                              | N.Gas     |
| POLAT TURZ. (POLAT RENAISSANCE İST.OT.)      | 1.6                           | 490                                | N.Gas     |
| YILDIZ SUNTA (Uzunçiftlik-Köseköy)(Düzeltme) | 22.6                          | 136                                | N.Gas     |

### CDM – Executive Board

| SÖNMEZ Elektrik (İlave)                                             | 8.7                | 61      | N.Gas        |
|---------------------------------------------------------------------|--------------------|---------|--------------|
|                                                                     |                    | 1960.6  | N. Gas total |
| AKKÖY ENERJÍ (AKKÖY I HES)                                          | 101.9              | 21.6    | Hydro        |
| ALP ELEKTRİK (TINAZTEPE) ANTALYA                                    | 7.7                | 9.2     | Hydro        |
| CANSU ELEKTRİK (Murgul/ARTVİN)                                      | 9.2                | 12.5    | Hydro        |
| ÇALDERE ELK.(ÇALDERE HES)Dalaman-MUĞLA                              | 8.7                | 11.2    | Hydro        |
| DAREN HES ELKT. (SEYRANTEPE BARAJI VE HES)                          | 49.7               | 14.4    | Hydro        |
| GÖZEDE HES (TEMSA ELEKTRİK) BURSA                                   | 2.4                | 6.1     | Hydro        |
| H.G.M. ENERJİ (KEKLİCEK HES) (Yeşilyurt)                            | 8.7                | 120     | Hydro        |
| HAMZALI HES (TURKON MNG ELEKTRİK)                                   | 16.7               | 2.9     | Hydro        |
| HİDRO KNT.(YUKARI MANAHOZ REG.VE HES)                               | 22.4               | 13.8    | Hydro        |
| İÇ-EN ELK.(ÇALKIŞLA REGÜLATÖRÜ VE HES)                              | 7.7                | 3.4     | Hydro        |
| KALEN ENERJİ (KALEN II REGÜLAT. VE HES)                             | 15.7               | 10.3    | Hydro        |
| SARMAŞIK I HES (FETAŞ FETHİYE ENERJİ)                               | 21                 | 1.5     | Hydro        |
| SARMAŞIK II HES (FETAŞ FETHİYE ENERJİ)                              | 21.6               | 1.2     | Hydro        |
| TORUL                                                               | 105.6              | 18.6    | Hydro        |
| ZORLU ENERJİ (MERCAN) (Düzeltme)                                    | 1.275              | 22.828  | Hydro        |
|                                                                     |                    | 269.528 | Hydro total  |
| BAKİ ELEKTRİK ŞAMLI RÜZGAR                                          | 21                 | 60.943  | Wind         |
| DATÇA RES (Datça)                                                   | 8.1                | 3.778   | Wind         |
| ERTÜRK ELEKTRİK Çatalca RES                                         | 60                 | 65.961  | Wind         |
| İNNORES ELK YUNTDAĞ RÜZG. (Aliağa)                                  | 42.5               | 98.058  | Wind         |
| LODOS RES (Taşoluk)(G.O.P./İSTANBUL)                                | 24                 | 25.714  | Wind         |
| SAYALAR RÜZGAR (Doğal Enerji)                                       | 30.6               | 53.925  | Wind         |
| SEBENOBA (DENİZ ELK.) (Samandağ-HATAY)                              | 31.2               | 46.919  | Wind         |
|                                                                     |                    | 355.298 | Wind total   |
| KARKEY(SİLOPİ-5) (154 kV) (İlave)                                   | 14.8               | 16.4    | Fuel oil     |
| SARAYKÖY JEOTERMAL (Denizli)                                        | 6.9                | 14.1    | Geothermal   |
| CDM registered projects in                                          | dicated with color |         |              |
| Auto producers which are not connected to grid indicated with color |                    |         |              |

**For CDM registered projects,** the VSC and GS project database were searched for registered CDM renewable energy production project in TR. The names of the projects were researched from the capacity addition source (the forecast projection report of Turkey). It should be noted that, there is not a list of projects registered to CDM in TR. Hence, this search type by own study of consultant is required to determine the capacity addition which tool requires.)

#### Annex 4

#### **MONITORING INFORMATION**

Please see Section B.7 for detailed information.